-
Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats.
Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2.
Zhao Y
,He X
,Ma X
,Wen J
,Li P
,Wang J
,Li R
,Zhu Y
,Wei S
,Li H
,Zhou X
,Li K
,Liu H
,Xiao X
... -
《-》
-
Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats.
The decoction of the flowers of Abelmoschus manihot (L.) Medic was traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China for hundreds of years. Phytochemical studies have indicated that total flavonoids extracted from flowers of A. manihot (L.) Medic (TFA) were the major constituents of the flowers. Our previous studies have investigated the hepatoprotective effects of the TFA against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. This study aimed to investigate the protective effects and mechanisms of TFA on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in rats.
The hepatoprotective activities of TFA (125, 250 and 500mg/kg) were investigated on ANIT-induced cholestatic liver injury in rats. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were used as indices of hepatic cell damage and measured. Meanwhile, the serum levels of alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA) were used as indices of biliary cell damage and cholestasis and evaluated. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione transferase (GST), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were measured in the liver homogenates. The bile flow in 4h was estimated and the histopathology of the liver tissue was evaluated. Furthermore, the expression of transporters, bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and Na(+)-taurocholate cotransporting polypeptide (NTCP) were studied by western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-PCR) to elucidate the protective mechanisms of TFA against ANIT-induced cholestasis.
The oral administration of TFA to ANIT-treated rats could reduce the increases in serum levels of ALT, AST, LDH, ALP, GGT, TBIL, DBIL and TBA. Decreased bile flow by ANIT was restored with TFA treatment. Concurrent administration of TFA reduced the severity of polymorphonuclear neutrophil infiltration and other histological damages, which were consistent with the serological tests. Hepatic MDA and GSH contents in liver tissue were reduced, while SOD and GST activities, which had been suppressed by ANIT, were elevated in the groups pretreated with TFA. With TFA intervention, levels of TNF-α and NO in liver were decreased. Additionally, TFA was found to increase the expression of liver BSEP, MRP2, and NTCP in both protein and mRNA levels in ANIT-induced liver injury with cholestasis.
TFA exerted protective effects against ANIT-induced liver injury. The possible mechanisms could be related to anti-oxidative damage, anti-inflammation and regulating the expression of hepatic transporters. It layed the foundation for the further research on the mechanisms of cholestasis as well as the therapeutic effects of A. manihot (L.) Medic for the treatment of jaundice.
Yan JY
,Ai G
,Zhang XJ
,Xu HJ
,Huang ZM
... -
《-》
-
Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats.
Cholestasis causes hepatic accumulation of bile acids leading to liver injury, fibrosis and liver failure. Paeoniflorin, the major active compound isolated from the roots of Paeonia lactiflora pall and Paeonia veitchii Lynch, is extensively used for liver diseases treatment in China. However, the mechanism of paeoniflorin's hepatoprotective effect on cholestasis has not been investigated yet. In this study, we administered paeoniflorin to rats for 3 days prior to alpha-naphthylisothiocyanate (ANIT) administration for once, then went on administering paeoniflorin to rats for 3 days. The data demonstrated that paeoniflorin significantly prevented ANIT-induced change in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphates (ALP), serum total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA) and gamma-glutamyl transpeptidase (γ-GT). Histology examination revealed that paeoniflorin treatment rats relieved more liver injury and bile duct proliferation than ANIT-administered rats. Moreover, our data indicated that paeoniflorin could restore glutathione (GSH) and its related synthase glutamate-cysteine ligase catalytic subunit (GCLc) and glutamate-cysteine ligase modifier subunit (GCLm) in ANIT-treated group. In addition, the RNA and protein expression of Akt and nuclear factor-E2-related factor-2 (Nrf2) were also activated by paeoniflorin in ANIT-induced rats. These findings indicated that paeoniflorin protected ANIT-induced cholestasis and increased GSH synthesis by activating Nrf2 through PI3K/Akt-dependent pathway. Therefore, paeoniflorin might be a potential therapeutic agent for cholestasis.
Chen Z
,Ma X
,Zhu Y
,Zhao Y
,Wang J
,Li R
,Chen C
,Wei S
,Jiao W
,Zhang Y
,Li J
,Wang L
,Wang R
,Liu H
,Shen H
,Xiao X
... -
《-》
-
Protective effects of n-Butanol extract and iridoid glycosides of Veronica ciliata Fisch. Against ANIT-induced cholestatic liver injury in mice.
Veronica ciliata Fisch. is a traditional medical herb that present in more than 100 types of Tibetan medicine prescriptions, most of which are used for liver disease therapy. Iridoid glycosides have been identified as the major active components of V.ciliata with a variety of biological activities.
The aim of this study is to explore the protective effect and potential mechanism of n-Butanol extract (BE) and iridoid glycosides (IG) from V.ciliata against ɑ-naphthyl isothiocyanate (ANIT)-induced hepatotoxicity and cholestasis in mice.
Mice were intragastrically (i.g.) given BE and IG at different dose or positive control ursodeoxycholic acid (UCDA) once a day for 14 consecutive days, and were treated with ANIT to cause liver injury on day 12th. Serum levels of hepatic injury markers and cholestasis indicators, liver index and liver histopathology were measured to evaluate the effect of BE and IG on liver injury caused by ANIT. The protein levels of tumor necrosis factor-α (TNF-α), nuclear factor kappa B(NF-κB), interleukin-6 (IL-6), Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and the levels of oxidative stress indicators in liver tissue were investigated to reveal the underlying protective mechanisms of BE and IG against ANIT-induced hepatotoxicity and cholestasis.
The n-Butanol extract (BE) and iridoid glycosides (IG) isolated from V.ciliata significantly decreased serum level of cholestatic liver injury markers aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total bile acid (TBA), total bilirubin (TBIL), and direct bilirubin (DBIL) in ANIT-treated mice. Histopathology of the liver tissue showed that pathological damages were relieved upon BE and IG treatment. Meanwhile, the results indicated BE and IG notably restored relative liver weights, inhibited oxidative stress induced by ANIT through increasing hepatic level of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT) and decreasing hepatic content of malondialdehyde (MDA). Western blot revealed that BE and IG inhibited the expression of pro-inflammatory factors TGF-α, IL-6 and NF-κB. Furthermore, the decreased protein expression of bile acid transporters NTCP, BSEP, MRP2 were upregulated by BE and IG in a dose-dependent manner.
The results have demonstrated that BE and IG exhibited a dose-dependently protective effect against ANIT-induced liver injury with acute intrahepatic cholestasis in mice, which might be related to the regulation of oxidative stress, inflammatory response and bile acid transport. In addition, these findings pointed out that iridoid glycosides as main active components of V.ciliata play a critical role in hepatoprotective effect of V.ciliata.
Hua W
,Zhang S
,Lu Q
,Sun Y
,Tan S
,Chen F
,Tang L
... -
《-》
-
Geniposidic acid protected against ANIT-induced hepatotoxity and acute intrahepatic cholestasis, due to Fxr-mediated regulation of Bsep and Mrp2.
Geniposidic acid (GPA) is the main constituent of Gardenia jasminoides Ellis (Rubiaceae), which has long been used to treat inflammation, jaundice and hepatic disorders. The cholagogic effect of Gardenia jasminoides Ellis (Rubiaceae) and GPA have been widely reported, but the underlying occurrence mechanism remains unclear.
This investigation was designed to evaluate the hepatoprotection effect and potential mechanisms of GPA derived from Gardenia jasminoides Ellis (Rubiaceae) on fighting against α-naphthylisothiocyanate (ANIT) caused liver injury with acute intrahepatic cholestasis.
Sprague-Dawley (SD) rats were intragastrically (i.g.) administered with the GPA (100, 50 and 25mg/kg B.W. every 24h) for seven consecutive days, and then they were treated with ANIT (i.g. 65mg/kg once in the 5th day) which induced liver injury with acute intrahepatic cholestasis. Serum and bile biochemical analysis, bile flow rate and liver histopathology were measured to evaluate the protective effect of GPA fight against ANIT treatment. The protein and mRNA expression levels of farnesoid X receptor (Fxr), bile-salt export pump (Bsep), multidrug resistance associated protein2 (Mrp2), were evaluated to study the effect of liver protection about GPA against ANIT induced hepatotoxicity and underlying mechanisms.
Some abnormalities were observed on ANIT treated rats including weight loss, reduced food intake and hair turned yellow. Obtained results demonstrated that at dose 100 and 50mg/kg B.W. (P<0.01) and 25mg/kg B.W. (P<0.05) of GPA pretreated dramatically prevented ANIT induced decreased in bile flow rate. Compared with ANIT treated group, the results of bile biochemical parameters about total bile acid (TBA) was increased by GPA at groups with any dose (P<0.01), glutathione (GSH) was increased significantly at high dose (P<0.01) and medium dose (P<0.05), total bilirubin (TB) was increased at high and medium dose (P<0.05), direct bilirubin (DB) was only increased at high dose (P<0.01). Serum levels of glutamic-Oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), γ-glutamyltranspeptidase (γ-GT), TB, DB and TBA in comparison with ANIT treated group (P<0.01) were reduced by GPA (between 100 and 50mg/kg B.W.) pretreatment. Histopathology of the liver tissue showed that pathological damages and hepatic portal area filled with bile were relieved after GPA pretreatment compared with ANIT treated group. The protein and mRNA expression of Fxr, Bsep and Mrp2 were decreased in ANIT treated group. On the contrary, the protein and mRNA of Fxr, Bsep and Mrp2 were up regulated significantly pretreatment by GPA at dose of high and medium groups. On protein level of Bsep and Mrp2 the result shown no statistical difference in GPA (25mg/kg B.W.), but it was not same shown in mRNA level.
The results of this investigation have demonstrated that the GPA exerts a dose dependent hepatoprotection effect on ANIT induced liver damage with acute intrahepatic cholestasis in rats, which may due to Fxr mediated regulation of bile transporters like Bsep and Mrp2.
Chen H
,Huang X
,Min J
,Li W
,Zhang R
,Zhao W
,Liu C
,Yi L
,Mi S
,Wang N
,Wang Q
,Zhu C
... -
《-》