Substitution of ethambutol with linezolid during the intensive phase of treatment of pulmonary tuberculosis: a prospective, multicentre, randomised, open-label, phase 2 trial.
Linezolid improves the treatment outcomes of multidrug-resistant tuberculosis substantially. We investigated whether use of linezolid instead of ethambutol increases the proportion of sputum culture conversion at 8 weeks of treatment in patients with pulmonary tuberculosis.
We did a phase 2, multicentre, randomised, open-label trial for patients with pulmonary tuberculosis at the three affiliated hospitals to Seoul National University and National Medical Center (Seoul-Seongnam, South Korea). Patients, aged 20-80 years, with a positive sputum for pulmonary tuberculosis, but without resistance to rifampicin, and current treatment administered for 7 days or fewer, were randomly assigned at a 1:1:1 ratio into three groups. The control group received ethambutol (2 months) with isoniazid, rifampicin, and pyrazinamide. The second group used linezolid (600 mg/day) for 2 weeks and the third group for 4 weeks instead of ethambutol for 2 months. We used a minimisation method to randomise, and stratified according to institution, cavitation on chest radiographs, and diabetes. The primary endpoint was the proportion of patients with negative culture conversion of sputum in liquid media after 8 weeks of treatment. The results of this trial were analysed primarily in the modified intention-to-treat population. The trial is registered with ClinicalTrials.gov, number NCT01994460.
Between Feb 19, 2014, and Jan 13, 2017, a total of 429 patients were enrolled and 428 were randomly assigned into either the control group (142 patients), the linezolid 2 weeks group (143 patients), or the linezolid 4 weeks group (143 patients). Among them, 401 were eligible for primary efficacy analyses. In the modified intention-to-treat analyses, negative cultures in liquid media at 8 weeks of treatment were observed in 103 (76·9%) of 134 control patients, 111 (82·2%) of 135 in the linezolid 2 weeks group, and 100 (75·8%) of 132 in the linezolid 4 weeks groups. The difference from the control group was 5.4% (95% CI -4·3 to 15·0, p=0·28) for the linezolid 2 weeks group and -1·1% (-11·3 to 9·1, p=0·83) for the linezolid 4 weeks group. Numbers of patients who experienced at least one adverse event were similar across the groups (86 [62·8%] of 137 in control, 79 [57·2%] of 138 in the linezolid 2 weeks group, and 75 [62·0%] of 121 in the linezolid 4 weeks group). Resistance to linezolid was not identified in any patient.
Higher rates of culture conversion at 8 weeks of treatment with short-term use of linezolid were not observed. However, safety analyses and the resistance profile suggested the potential role of linezolid in shortening of treatment for drug-susceptible tuberculosis.
Ministry of Health and Welfare, South Korea.
Lee JK
,Lee JY
,Kim DK
,Yoon HI
,Jeong I
,Heo EY
,Park YS
,Jo YS
,Lee JH
,Park SS
,Park JS
,Kim J
,Lee SM
,Joh JS
,Lee CH
,Lee J
,Choi SM
,Park JH
,Lee SH
,Cho YJ
,Lee YJ
,Kim SJ
,Kwak N
,Hwang YR
,Kim H
,Ki J
,Lim JN
,Choi HS
,Lee M
,Song T
,Kim HS
,Han J
,Ahn H
,Hahn S
,Yim JJ
... -
《-》
High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial.
Tuberculosis is the world's leading infectious disease killer. We aimed to identify shorter, safer drug regimens for the treatment of tuberculosis.
We did a randomised controlled, open-label trial with a multi-arm, multi-stage design. The trial was done in seven sites in South Africa and Tanzania, including hospitals, health centres, and clinical trial centres. Patients with newly diagnosed, rifampicin-sensitive, previously untreated pulmonary tuberculosis were randomly assigned in a 1:1:1:1:2 ratio to receive (all orally) either 35 mg/kg rifampicin per day with 15-20 mg/kg ethambutol, 20 mg/kg rifampicin per day with 400 mg moxifloxacin, 20 mg/kg rifampicin per day with 300 mg SQ109, 10 mg/kg rifampicin per day with 300 mg SQ109, or a daily standard control regimen (10 mg/kg rifampicin, 5 mg/kg isoniazid, 25 mg/kg pyrazinamide, and 15-20 mg/kg ethambutol). Experimental treatments were given with oral 5 mg/kg isoniazid and 25 mg/kg pyrazinamide per day for 12 weeks, followed by 14 weeks of 5 mg/kg isoniazid and 10 mg/kg rifampicin per day. Because of the orange discoloration of body fluids with higher doses of rifampicin it was not possible to mask patients and clinicians to treatment allocation. The primary endpoint was time to culture conversion in liquid media within 12 weeks. Patients without evidence of rifampicin resistance on phenotypic test who took at least one dose of study treatment and had one positive culture on liquid or solid media before or within the first 2 weeks of treatment were included in the primary analysis (modified intention to treat). Time-to-event data were analysed using a Cox proportional-hazards regression model and adjusted for minimisation variables. The proportional hazard assumption was tested using Schoelfeld residuals, with threshold p<0·05 for non-proportionality. The trial is registered with ClinicalTrials.gov (NCT01785186).
Between May 7, 2013, and March 25, 2014, we enrolled and randomly assigned 365 patients to different treatment arms (63 to rifampicin 35 mg/kg, isoniazid, pyrazinamide, and ethambutol; 59 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, SQ109; 57 to rifampicin 20 mg/kg, isoniazid, pyrazinamide, and SQ109; 63 to rifampicin 10 mg/kg, isoniazid, pyrazinamide, and moxifloxacin; and 123 to the control arm). Recruitment was stopped early in the arms containing SQ109 since prespecified efficacy thresholds were not met at the planned interim analysis. Time to stable culture conversion in liquid media was faster in the 35 mg/kg rifampicin group than in the control group (median 48 days vs 62 days, adjusted hazard ratio 1·78; 95% CI 1·22-2·58, p=0·003), but not in other experimental arms. There was no difference in any of the groups in time to culture conversion on solid media. 11 patients had treatment failure or recurrent disease during post-treatment follow-up: one in the 35 mg/kg rifampicin arm and none in the moxifloxacin arm. 45 (12%) of 365 patients reported grade 3-5 adverse events, with similar proportions in each arm.
A dose of 35 mg/kg rifampicin was safe, reduced the time to culture conversion in liquid media, and could be a promising component of future, shorter regimens. Our adaptive trial design was successfully implemented in a multi-centre, high tuberculosis burden setting, and could speed regimen development at reduced cost.
The study was funded by the European and Developing Countries Clinical Trials partnership (EDCTP), the German Ministry for Education and Research (BmBF), and the Medical Research Council UK (MRC).
Boeree MJ
,Heinrich N
,Aarnoutse R
,Diacon AH
,Dawson R
,Rehal S
,Kibiki GS
,Churchyard G
,Sanne I
,Ntinginya NE
,Minja LT
,Hunt RD
,Charalambous S
,Hanekom M
,Semvua HH
,Mpagama SG
,Manyama C
,Mtafya B
,Reither K
,Wallis RS
,Venter A
,Narunsky K
,Mekota A
,Henne S
,Colbers A
,van Balen GP
,Gillespie SH
,Phillips PPJ
,Hoelscher M
,PanACEA consortium
... -
《-》