Interventions to reduce Staphylococcus aureus in the management of eczema.
Staphylococcus aureus (S. aureus) can cause secondary infection in eczema, and may promote inflammation in eczema that does not look infected. There is no standard intervention to reduce S. aureus burden in eczema. It is unclear whether antimicrobial treatments help eczema or promote bacterial resistance. This is an update of a 2008 Cochrane Review.
To assess the effects of interventions to reduce S. aureus for treating eczema.
We updated our searches of the following databases to October 2018: Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase and LILACS. We searched five trials registers and three sets of conference proceedings. We checked references of trials and reviews for further relevant studies. We contacted pharmaceutical companies regarding ongoing and unpublished trials.
Randomised controlled trials of products intended to reduce S. aureus on the skin in people diagnosed with atopic eczema by a medical practitioner. Eligible comparators were a similar treatment regimen without the anti-staphylococcal agent.
We used standard methodological procedures expected by Cochrane. Our key outcomes were participant- or assessor-rated global improvement in symptoms/signs, quality of life (QOL), severe adverse events requiring withdrawal, minor adverse events, and emergence of antibiotic-resistant micro-organisms.
We included 41 studies (1753 analysed participants) covering 10 treatment categories. Studies were conducted mainly in secondary care in Western Europe; North America; the Far East; and elsewhere. Twelve studies recruited children; four, adults; 19, both; and six, unclear. Fifty-nine per cent of the studies reported the mean age of participants (range: 1.1 to 34.6 years). Eczema severity ranged from mild to severe. Many studies did not report our primary outcomes. Treatment durations ranged from 10 minutes to 3 months; total study durations ranged from 15 weeks to 27 months. We considered 33 studies at high risk of bias in at least one domain. We present results for three key comparisons. All time point measurements were taken from baseline. We classed outcomes as short-term when treatment duration was less than four weeks, and long-term when treatment was given for more than four weeks. Fourteen studies evaluated topical steroid/antibiotic combinations compared to topical steroids alone (infective status: infected (two studies), not infected (four studies), unspecified (eight studies)). Topical steroid/antibiotic combinations may lead to slightly greater global improvement in good or excellent signs/symptoms than topical steroid alone at 6 to 28 days follow-up (risk ratio (RR) 1.10, 95% confidence interval (CI) 1.00 to 1.21; 224 participants; 3 studies, low-quality evidence). There is probably little or no difference between groups for QOL in children, at 14 days follow-up (mean difference (MD) -0.18, 95% CI -0.40 to 0.04; 42 participants; 1 study, moderate-quality evidence). The subsequent results for this comparison were based on very low-quality evidence, meaning we are uncertain of their validity: severe adverse events were rare (follow-up: between 6 to 28 days): both groups reported flare of dermatitis, worsening of the condition, and folliculitis (325 participants; 4 studies). There were fewer minor adverse events (e.g. flare, stinging, itch, folliculitis) in the combination group at 14 days follow-up (218 participants; 2 studies). One study reported antibiotic resistance in children at three months follow-up, with similar results between the groups (65 participants; 1 study). Four studies evaluated oral antibiotics compared to placebo (infective status: infected eczema (two studies), uninfected (one study), one study's participants had colonisation but no clinical infection). Oral antibiotics may make no difference in terms of good or excellent global improvement in infants and children at 14 to 28 days follow-up compared to placebo (RR 0.80; 95% CI 0.18 to 3.50; 75 participants; 2 studies, low-quality evidence). There is probably little or no difference between groups for QOL (in infants and children) at 14 days follow-up (MD 0.11, 95% CI -0.10 to 0.32, 45 participants, 1 study, moderate-quality evidence). The subsequent results for this comparison were based on very low-quality evidence, meaning we are uncertain of their validity: adverse events requiring treatment withdrawal between 14 to 28 days follow-up were very rare, but included eczema worsening (both groups), loose stools (antibiotic group), and Henoch-Schönlein purpura (placebo group) (4 studies, 199 participants). Minor adverse events, including nausea, vomiting, diarrhoea, and stomach and joint pains, at 28 days follow-up were also rare and generally low in both groups (1 study, 68 infants and children). Antibiotic resistance at 14 days was reported as similar in both groups (2 studies, 98 infants and children). Of five studies evaluating bleach baths compared to placebo (water) or bath emollient (infective status: uninfected (two studies), unspecified (three studies)), one reported global improvement and showed that bleach baths may make no difference when compared with placebo at one month follow-up (RR 0.78, 95% CI 0.37 to 1.63; 36 participants; low-quality evidence). One study showed there is probably little or no difference in QOL at 28 days follow-up when comparing bleach baths to placebo (MD 0.90, 95% CI -1.32 to 3.12) (80 infants and children; moderate-quality evidence). We are uncertain if the groups differ in the likelihood of treatment withdrawals due to adverse events at two months follow-up (only one dropout reported due to worsening itch (placebo group)) as the quality of evidence was very low (1 study, 42 participants). One study reported that five participants in each group experienced burning/stinging or dry skin at two months follow-up, so there may be no difference in minor adverse events between groups (RR 1.00, 95% CI 0.35 to 2.87, 36 participants, low-quality evidence). Very low-quality evidence means we are also uncertain if antibiotic resistance at four weeks follow-up is different between groups (1 study, 80 participants ≤ 18 years).
We found insufficient evidence on the effects of anti-staphylococcal treatments for treating people with infected or uninfected eczema. Low-quality evidence, due to risk of bias, imprecise effect estimates and heterogeneity, made pooling of results difficult. Topical steroid/antibiotic combinations may be associated with possible small improvements in good or excellent signs/symptoms compared with topical steroid alone. High-quality trials evaluating efficacy, QOL, and antibiotic resistance are required.
George SM
,Karanovic S
,Harrison DA
,Rani A
,Birnie AJ
,Bath-Hextall FJ
,Ravenscroft JC
,Williams HC
... -
《Cochrane Database of Systematic Reviews》
Topical anti-inflammatory treatments for eczema: network meta-analysis.
Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments.
To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis.
We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies.
We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments.
We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome.
We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS).
Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.
Lax SJ
,Van Vogt E
,Candy B
,Steele L
,Reynolds C
,Stuart B
,Parker R
,Axon E
,Roberts A
,Doyle M
,Chu DK
,Futamura M
,Santer M
,Williams HC
,Cro S
,Drucker AM
,Boyle RJ
... -
《Cochrane Database of Systematic Reviews》