Angiogenic properties of endometrial mesenchymal stromal cells in endothelial co-culture: an in vitro model of endometriosis.

来自 PUBMED

作者:

Canosa SMoggio ABrossa APittatore GMarchino GLLeoncini SBenedetto CRevelli ABussolati B

展开

摘要:

Can endometrial mesenchymal stromal cells (E-MSCs) differentiate into endothelial cells in an in vitro co-culture system with human umbilical vein endothelial cells (HUVECs)? E-MSCs can acquire endothelial markers and function in a direct co-culture system with HUVECs. E-MSCs have been identified in the human endometrium as well as in endometriotic lesions. E-MSCs appear to be involved in formation of the endometrial stromal vascular tissue and the support of tissue growth and vascularization. The use of anti-angiogenic drugs appears as a possible therapeutic strategy against endometriosis. This is an in vitro study comprising patients receiving surgical treatment of ovarian endometriosis (n = 9). E-MSCs were isolated from eutopic and ectopic endometrial tissue and were characterized for the expression of mesenchymal and endothelial markers by FACS analysis and Real-Time PCR. CD31 acquisition was evaluated by FACS analysis and immunofluorescence after a 48 h-direct co-culture with green fluorescent protein +-HUVECs. A tube-forming assay was set up in order to analyze the functional potential of their interaction. Finally, co-cultures were treated with the anti-angiogenic agent Cabergoline. A subpopulation of E-MSCs acquired CD31 expression and integrated into tube-like structures when directly in contact with HUVECs, as observed by both FACS analysis and immunofluorescence. The isolation of CD31+ E-MSCs revealed significant increases in CD31, vascular endothelial growth factor receptor 2, TEK receptor tyrosine kinase and vascular endothelial-Cadherin mRNA expression levels with respect to basal and to CD31neg cells (P < 0.05). On the other hand, the expression of mesenchymal genes such as c-Myc, Vimentin, neuronal-Cadherin and sushi domain containing 2 remained unchanged. Cabergoline treatment induced a significant reduction of the E-MSC angiogenic potential (P < 0.05 versus control). Not applicable. Further studies are necessary to investigate the cellular and molecular mechanisms underlying the endothelial cell differentiation. E-MSCs may undergo endothelial differentiation, and be potentially involved in the development of endometriotic implants. Cell culture systems that more closely mimic the cellular complexity typical of endometriotic tissues in vivo are required to develop novel strategies for treatment. This study was supported by the 'Research Fund ex-60%', University of Turin, Turin, Italy. All authors declare that their participation in the study did not involve actual or potential conflicts of interests.

收起

展开

DOI:

10.1093/molehr/gax006

被引量:

18

年份:

2017

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(958)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读