-
Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in barley (Hordeum vulgare) growth experiments.
Biochars produced from marginal biomass feedstocks are a potential source of recycled nutrients for agriculture, but may also contain potentially toxic elements (PTEs) which can cause phytotoxicity. We assessed the potential for nutrient recycling from such materials against potential environmental risks in 17 biochars containing high concentrations of various PTEs and nutrients. Methods for investigating the risk of biochar-derived PTEs were developed and assessed. Short-term (21days) growth experiments with barley (Hordeum vulgare) in 5% biochar/sand mixtures were used to present the 'worst-case scenario' of high dose and low pH buffering. We compared plant nutrient and PTE concentrations with amounts extracted from the same biochars using 1M NH4NO3 or 0.01M CaCl2 (buffered and unbuffered, respectively) and Mehlich 3 to analyse whether such extractions could be used to predict bioavailability. The yields of barley grown with biochars "EPOCAD550", and "WLB550" were significantly higher than the control (p<0.05). Total phosphorus (P) concentration in above-ground biomass was higher than the control for the EPOCAD550 treatment (p<0.01). Both buffered and unbuffered 0.01M CaCl2 biochar extractions were significantly positively correlated with plant leaf concentration for six of the 18 elements investigated, more than any of the other extractions. CaCl2 extractions provided the most representative assessment of element bioavailability from marginal biochars compared to more resource-intensive growth experiments. Our results provide new insights into the bioavailability of elements in biochar and the standardisation of methods which accurately assess this attribute, which is necessary for promoting use of biochars from marginal biomass for recycling nutrients from wastewater and to agricultural production.
Shepherd JG
,Buss W
,Sohi SP
,Heal KV
... -
《-》
-
Risks and benefits of marginal biomass-derived biochars for plant growth.
In this study, 19 biochars from marginal biomass, representing all major biomass groups (woody materials, grass, an aquatic plant, anthropogenic wastes) were investigated regarding their content of available potentially toxic elements (PTEs) and nutrients (determined by NH4NO3-extractions) and their effects on cress (Lepidium sativum) seedling growth. The objective was to assess the potential and actual effects of biochar with increased PTE content on plant growth in the context of use in soil amendments and growing media. It showed that the percentage of available PTEs was highest for biochars produced at the highest treatment temperature (HTT) of 750°C. On average, however, for all 19 biochars, the percentage availability of Cu, Cr, Ni and Zn (<1.5% for all) was similar to the percentage availability reported in the literature for the same elements in soils at similar pH values which is a highly important finding. Most biochars exceeded German soil threshold values for NH4NO3-extractable PTEs, such as Zn (by up to 25-fold), As and Cd. Despite this, cress seedling growth tests with 5% biochar in sand did not show any correlations between inhibitory effects (observed in 5 of the 19 biochars) and the available PTE concentrations. Instead, the available K concentration and biochar pH were highly significantly, negatively correlated with seedling growth (K: p<0.001, pH: p=0.004). K had the highest available concentration of all elements and the highest percentage availability (47.7±19.7% of the total K was available). Consequently, available K contributed most to the osmotic pressure and high pH which negatively affected the seedlings. Although a potential risk if some of these marginal biomass-derived biochar were applied at high concentrations, e.g. 5% (>100tha(-1)), when applied at agriculturally realistic application rates (1-10tha(-1)), the resulting smaller increases in pH and available K concentration may actually be beneficial for plant growth.
Buss W
,Graham MC
,Shepherd JG
,Mašek O
... -
《-》
-
Suitability of marginal biomass-derived biochars for soil amendment.
The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser.
Buss W
,Graham MC
,Shepherd JG
,Mašek O
... -
《-》
-
The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.
Microwave-assisted catalytic pyrolysis was investigated using K3PO4 and clinoptilolite to enhance biochar sorption affinity for heavy metals. The performance of resulting biochar samples was characterized through their effects on plant growth, bioavailability, phytotoxicity, and uptake of heavy metals in a sandy soil contaminated with Pb, Ni, and Co. The produced biochars have high cation-exchange capacity (CEC) and surface area, and rich in plant nutrients, which not only reduced heavy metals (Pb, Ni, and Co), bioavailability and phytotoxicity, but also increased plant growth rate by up to 145%. The effectiveness of biochar in terms of reduced phytotoxicity and plant uptake of heavy metals was further improved by mixing K3PO4 and clinoptilolite with biomass through microwave pyrolysis. This may be due to the predominance of different mechanisms as 10KP/10Clino biochar has the highest micropore surface area (405 m2/g), high concentrations of K (206 g/kg), Ca (26.5 g/kg), Mg (6.2 g/kg) and Fe (11.9 g/kg) for ion-exchange and high phosphorus content (79.8 g/kg) for forming insoluble compounds with heavy metals. The largest wheat shoot length (143 mm) and lowest extracted amounts of Pb (107 mg/kg), Ni (2.4 mg/kg) and Co (63.9 mg/kg) were also obtained by using 10KP/10Clino biochar at 2 wt% load; while the smallest shoot length (68 mm) and highest extracted amounts of heavy metals (Pb 408 mg/kg, Ni 15 mg/kg and Co 148 mg/kg) for the samples treated with biochars were observed for soils mixed with 1 wt% 10Clino biochar. Strong negative correlations were also observed between biochar micropore surface area, CEC and the extracted amounts of heavy metals. Microwave-assisted catalytic pyrolysis of biomass has a great potential for producing biochar with high sorption affinity for heavy metals and rich nutrient contents using properly selected catalysts/additives that can increase microwave heating rate and improve biochar and bio-oil properties.
Mohamed BA
,Ellis N
,Kim CS
,Bi X
... -
《-》
-
The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils.
Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive significant differences were observed in alkaline soil. These results suggest that biochars derived from agricultural residues may act as a source of P in agronomic applications and improve plant growth, although soil conditions may play a significant role.
Manolikaki II
,Mangolis A
,Diamadopoulos E
《-》