Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model.
Aim of the study was to investigate the effect of vitrification on viability, cytoskeletal integrity and in vitro developmental competence after in vitro fertilization (IVF) of oocytes vitrified before or after in vitro maturation (IVM) using a pig model. Oocytes from abattoir-derived porcine ovaries were vitrified at either the germinal vesicle (GV) or metaphase II (MII) stage by modified solid surface vitrification (SSV). Oocyte viability was evaluated by stereomicroscopic observation whereas their nuclear stage and morphology of microtubules and F-actin were observed by confocal microscopy after immunostaining. Fertilization was assessed by orcein staining. The survival rate after vitrification was higher for MII-stage than for GV-stage oocytes. However, the ability of surviving oocytes to reach the MII stage after vitrification at the GV stage (GV-vitrified oocytes) was similar to that of control oocytes. Furthermore, after IVM, GV-vitrified oocytes had better spindle and F-actin integrity than oocytes vitrified at the MII stage (MII-vitrified oocytes). In accordance with this result, GV-vitrified oocytes had better ability to extrude the second polar body and support male pronucleus formation after in vitro fertilization (IVF), in comparison to MII-vitrified oocytes. Fertilization rates did not differ among groups. Finally, the ability of GV-vitrified oocytes to develop into embryos was superior to that of MII-vitrified oocytes. However, both vitrified groups showed reduced blastocyst development compared with the control group. In conclusion vitrification of porcine oocytes at the GV stage is advantageous in conferring better cytoskeletal organization and competence to develop to the blastocyst stage in comparison with vitrification at the MII stage.
Egerszegi I
,Somfai T
,Nakai M
,Tanihara F
,Noguchi J
,Kaneko H
,Nagai T
,Rátky J
,Kikuchi K
... -
《-》
Bovine oocyte vitrification using the Cryotop method: effect of cumulus cells and vitrification protocol on survival and subsequent development.
The ability to successfully cryopreserve mammalian oocytes has numerous practical, economical and ethical benefits, which may positively impact animal breeding programs and assisted conception in humans. However, oocyte survival and development following vitrification remains poor. The aim of the present study was (1) to evaluate the effect of the presence of cumulus cells on the outcome of vitrification of immature (GV) or mature (MII) bovine oocytes, (2) to compare empirical and theoretical vitrification protocols, and (3) to assess the effect of adding ice blockers to vitrification media on survival and development competence of bovine oocytes following vitrification using the Cryotop method. In Experiment 1, cumulus-enclosed and partially-denuded GV and MII oocytes were vitrified in 15% EG+15% Me(2)SO+0.5M sucrose in two steps. In Experiment 2, GV oocytes were vitrified either as above or using theoretical modeling based on permeability and osmotic tolerance characteristics in 30% EG+11.4% trehalose in three steps or 40% EG+11.4% trehalose in four steps. In Experiment 3, GV oocytes were vitrified in media supplemented or not with 1 of 2 ice blockers (21st Century Medicine, Fontana, CA) 1% X-1000, 1% Z-1000 or both in three steps. In Experiment 1, the survival, cleavage and blastocyst rate of cumulus-enclosed oocytes was significantly higher than those of partially-denuded oocytes when vitrified at the GV stage (93.8% vs. 81.3%, 65.8% vs. 47.3%, 11.3% vs. 4.0%, respectively, P<0.05). However, no significant effect of cumulus cover was detected between the two groups when vitrified at MII (93.0% vs. 91.8%, 35.2% vs. 36.8%, 5.0% vs. 4.4%, respectively). Furthermore, cumulus-enclosed oocytes vitrified at the GV stage exhibited significantly higher developmental competence than those vitrified at the MII stage (P<0.05). In Experiment 2, there were no significant differences in the survival, cleavage and blastocyst rate among three protocols (86.0% vs. 92.8% vs. 91.2%, 44.8% vs. 54.4% vs. 45.6%, 5.0% vs. 5.4% vs. 4.0%, respectively). However, cleavage and blastocyst rate were significantly lower (P<0.05) than non-vitrified control oocytes. In Experiment 3, the presence of ice blockers did not alter the cleavage rate or blastocyst development (P>0.05). In conclusion, cumulus-enclosed GV bovine oocytes survived vitrification and subsequently developed at higher rates than MII oocytes using Cryotop method and conventional IVF procedure. Theoretical analysis of permeability characteristics and tolerance limits could not explain the low developmental competence of vitrified oocytes.
Zhou XL
,Al Naib A
,Sun DW
,Lonergan P
... -
《-》
Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices.
In order to assess effects of vitrification on ovine oocytes at the germinal vesicle (GV) stage, the conventional plastic straw (CS), the open-pulled straw (OPS), and Cryoloop were used to vitrify ovine oocytes. Oocytes were randomly divided into five groups: (1) Control; (2) Oocytes exposed to vitrification and dilution solutions without any cryopreservation (toxicity); (3) Oocytes vitrified using CS (CS); (4) Oocytes vitrified using OPS (OPS), and (5) Oocytes vitrified using Cryoloop (Cryoloop). The viability, cumulus cell expansion, nuclear maturation after in vitro maturation (IVM), and developmental capability of vitrified oocytes following parthenogenetic activation (PA) or in vitro fertilization (IVF) were assessed. The pretreatment in the vitrification and dilution solutions without any freezing or thawing did not adversely influence oocytes. The viability of vitrified oocytes were significantly declined compared to unfrozen oocytes (P < 0.05). The viability of oocytes vitrified using open-pulled straws or Cryoloop was significantly higher than that in the CS group (P < 0.05). After IVM, the percentage of oocytes reaching to the metaphase II (MII) stage was significantly higher with Cryoloop and OPS following by CS. However, the in vitro maturing percentage of vitrified oocytes was significantly less than that of unfrozen oocytes (P < 0.05). After PA, the developmental capability of vitrified oocytes was significantly decreased compared to unfrozen oocytes. The cleavage rate of oocytes vitrified using conventional plastic straws was significantly less than those of the other freezing groups (P < 0.05). The cleaving capability of oocytes vitrified using Cryoloop was significantly increased compared to the OPS group. However, there was no significant difference existing amongst the freezing groups as concerning the blastocyst rate. Following IVF, the developmental capability of vitrified oocytes was severely damaged compared to that of unfrozen oocytes. The cleavage rate of oocytes vitrified with Cryoloop was similar to that of oocytes vitrified with open-pulled straws. However, the cleavage rate of vitrified oocytes in the CS group was significantly less than that in the OPS or Cryoloop group (P < 0.05). None of oocytes vitrified using conventional plastic straw developed to the blastocyst stage following IVF. There was no significant difference existing between OPS and Cryoloop with respect to the blastocyst rate. After staining with cFDA and PI, cumulus cells surrounding oocytes were partly damaged by vitrification and thawing while the membrane of vitrified oocyte still remained intact. In conclusion, vitrification can seriously damage ovine immature oocytes and cumulus cells surrounding oocytes, which may subsequently affect their developmental capability. Finally, this study further proves that increasing the freezing and thawing velocity benefits survival of vitrified immature oocytes.
Quan GB
,Wu GQ
,Wang YJ
,Ma Y
,Lv CR
,Hong QH
... -
《-》
Effect of different vitrification solutions and cryodevices on viability and subsequent development of buffalo oocytes vitrified at the germinal vesicle (GV) stage.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.
El-Shalofy AS
,Moawad AR
,Darwish GM
,Ismail ST
,Badawy ABA
,Badr MR
... -
《-》