Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.
Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent.
There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes.
Dorta E
,Lobo MG
,Gonzalez M
《-》
Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis.
Polyphenolic phytochemicals in traditionally used medicinal plants act as powerful antioxidants, which aroused an increasing interest in their application in functional food development.
The effect of extraction time (5 and 15 min) and hydrolysis on the qualitative and quantitative content of phenolic compounds and antioxidant capacity of six traditionally used medicinal plants (Melissa officinalis L., Thymus serpyllum L., Lavandula officinalis Miller, Rubus fruticosus L., Urtica dioica L., and Olea europea L.) were investigated.
The content of total phenols, flavonoids, flavan-3-ols and tannins was determined using UV/Vis spectrophotometric methods, while individual phenolic acids, flavones and flavonols were separated and detected using HPLC analysis. Also, to obtain relevant data on the antioxidant capacity, two different assays, (2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging and ferric reducing/antioxidant power (FRAP) assays were used.
The extraction efficiency of phenolics, as well as the antioxidant capacity of plant extracts, was affected by both prolonged extraction and hydrolysis. The overall highest content of phenolic compounds was determined in hydrolyzed extract of blackberry leaves (2160 mg GAE/L), followed by the non-hydrolyzed extract of lemon balm obtained after 15 min of extraction (929.33 mg GAE/L). The above extracts also exhibited the highest antioxidant capacity, while extracts of olive leaves were characterized with the lowest content of phenolic compounds, as well as the lowest antioxidant capacity. The highest content of rosmarinic acid, as the most abundant phenolic compound, was determined in non-hydrolyzed extract of lemon balm, obtained after 15 min of extraction. Although the hydrolysis provided the highest content of polyphenolic compounds, longer extraction time (15 min) was more efficient to extract these bioactives than shorter extraction duration (5 min).
The distribution of detected phenolic compounds showed a wide variability with regard to their botanical origin. Examined medicinal plants showed to be a valuable supplement to a daily intake of bioactive compounds.
Komes D
,Belščak-Cvitanović A
,Horžić D
,Rusak G
,Likić S
,Berendika M
... -
《-》
Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions.
The successful replacement of some synthetic food antioxidants by safe natural antioxidants has fostered intensive search for new vegetable sources of antioxidants. In our study the phenol and flavonoid content of extracts of tara pods was determined. The antioxidant activity was also studied by three different analytical assays: the measurement of scavenging capacity against a radical ABTS⁺ , the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP).
All analyzed samples showed a good antioxidant capacity, but the use of a solution of ethanol 75% in a 1 h ultrasonic process allowed achieving the greatest quantity of phenolics (0.464 mg gallic acid equivalent (GAE) g⁻¹ dry weight (DW) ) and the highest antioxidant activity measured by the ABTS⁺ and ORAC methods (10.17 and 4.29 mmol L⁻¹ Trolox equivalents (TE) g⁻¹ DW, respectively). The best method for efficient extraction of flavonoids (3.08 mg catechin equivalent (CE) g⁻¹ DW) was a 24 h maceration in cold water. Two extracts obtained with ethanol 75% and water were added to a model food system (oil-in-water emulsion) and the oxidative stability was studied during storage at 38 °C. Oxidation was monitored by determination of the peroxide value. The addition of 48 µg mL⁻¹ ethanol extract to the emulsion delayed oxidation to the same extent as 17.8 µg mL⁻¹ of Trolox, while water extract was only effective in the early stages of the oxidation process.
The results of this study indicate that ethanolic tara extracts may be suitable for use in food, cosmetic and nutraceutical applications.
Skowyra M
,Falguera V
,Gallego G
,Peiró S
,Almajano MP
... -
《-》