Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.

来自 PUBMED

作者:

Schopp PMüller DTechnow FMelchinger AE

展开

摘要:

Synthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.) lines taken from an ancestral population with either short- or long-range linkage disequilibrium (LD). In eight scenarios differing in relatedness of the training and prediction sets and in the types of data used to calculate the relationship matrix (QTL, SNPs, tag markers, and pedigree), we investigated the prediction accuracy (PA) of Genomic best linear unbiased prediction (GBLUP) and analyzed contributions from pedigree relationships captured by SNP markers, as well as from cosegregation and ancestral LD between QTL and SNPs. The effects of training set size [Formula: see text] and marker density were also studied. Sampling few parents ([Formula: see text]) generates substantial sample LD that carries over into synthetics through cosegregation of alleles at linked loci. For fixed [Formula: see text], [Formula: see text] influences PA most strongly. If the training and prediction set are related, using [Formula: see text] parents yields high PA regardless of ancestral LD because SNPs capture pedigree relationships and Mendelian sampling through cosegregation. As [Formula: see text] increases, ancestral LD contributes more information, while other factors contribute less due to lower frequencies of closely related individuals. For unrelated prediction sets, only ancestral LD contributes information and accuracies were poor and highly variable for [Formula: see text] due to large sample LD. For large [Formula: see text], achieving moderate accuracy requires large [Formula: see text], long-range ancestral LD, and high marker density. Our approach for analyzing PA in synthetics provides new insights into the prospects of GP for many types of source populations encountered in plant breeding.

收起

展开

DOI:

10.1534/genetics.116.193243

被引量:

28

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(781)

参考文献(48)

引证文献(28)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读