Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting.

来自 PUBMED

作者:

Agyarko-Mintah ECowie AVan Zwieten LSingh BPSmillie RHarden SFornasier F

展开

摘要:

The poultry industry produces abundant quantities of nutrient-rich litter, much of which is composted before use as a soil amendment. However, a large proportion of nitrogen (N) in poultry litter is lost via volatilisation during composting, with negative environmental and economic consequences. This study examined the effect of incorporating biochar during composting of poultry litter on ammonia (NH3) volatilisation and N retention. Biochars produced at 550°C from greenwaste (GWB) and poultry litter (PLB) feedstocks were co-composted with a mixture of raw poultry litter and sugarcane straw [carbon (C):N ratio 10:1] in compost bins. Ammonia emissions accounted for 17% of the total N (TN) lost from the control and 12-14% from the biochar-amended compost. The TN emitted as NH3, as a percentage of initial TN, was significantly lower (P<0.05) i.e. by 60% and 55% in the compost amended with GWB and PLB, respectively, relative to the control. The proportion of N retained in the finished compost, as a percentage of initial TN, was 84%, 78% and 67% for the GWB, PLB and nil biochar control, respectively. Lower concentration of dissolved organic C (DOC) together with higher activity of beta-glucosidase and leucine-aminopeptidase were found in the GWB-amended compost (cf. control). It is hypothesized that lower NH3 emission in the GWB-amended compost was caused not just by the higher surface area of this biochar but could also be related to greater incorporation of ammonium (NH4+) in organic compounds during microbial utilisation of DOC. Furthermore, the GWB-amended compost retained more NH4+ at the end of composting than the PLB-amended compost. Results showed that addition of biochar, especially GWB, generated multiple benefits in composting of poultry litter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter. It is suggested that the latter benefit is linked to a beneficial modification of the microbial environment.

收起

展开

DOI:

10.1016/j.wasman.2016.12.009

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(759)

参考文献(0)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读