-
Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting.
The poultry industry produces abundant quantities of nutrient-rich litter, much of which is composted before use as a soil amendment. However, a large proportion of nitrogen (N) in poultry litter is lost via volatilisation during composting, with negative environmental and economic consequences. This study examined the effect of incorporating biochar during composting of poultry litter on ammonia (NH3) volatilisation and N retention. Biochars produced at 550°C from greenwaste (GWB) and poultry litter (PLB) feedstocks were co-composted with a mixture of raw poultry litter and sugarcane straw [carbon (C):N ratio 10:1] in compost bins. Ammonia emissions accounted for 17% of the total N (TN) lost from the control and 12-14% from the biochar-amended compost. The TN emitted as NH3, as a percentage of initial TN, was significantly lower (P<0.05) i.e. by 60% and 55% in the compost amended with GWB and PLB, respectively, relative to the control. The proportion of N retained in the finished compost, as a percentage of initial TN, was 84%, 78% and 67% for the GWB, PLB and nil biochar control, respectively. Lower concentration of dissolved organic C (DOC) together with higher activity of beta-glucosidase and leucine-aminopeptidase were found in the GWB-amended compost (cf. control). It is hypothesized that lower NH3 emission in the GWB-amended compost was caused not just by the higher surface area of this biochar but could also be related to greater incorporation of ammonium (NH4+) in organic compounds during microbial utilisation of DOC. Furthermore, the GWB-amended compost retained more NH4+ at the end of composting than the PLB-amended compost. Results showed that addition of biochar, especially GWB, generated multiple benefits in composting of poultry litter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter. It is suggested that the latter benefit is linked to a beneficial modification of the microbial environment.
Agyarko-Mintah E
,Cowie A
,Van Zwieten L
,Singh BP
,Smillie R
,Harden S
,Fornasier F
... -
《-》
-
Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter.
Biochar has intrinsic and nascent structural and sorption properties that may alter the physical and chemical properties of a composting mixture thus influencing the production of greenhouse gases [GHGs; nitrous oxide (N2O) and methane (CH4)]. In this study, contrasting biochars produced from greenwaste (GWB) or poultry litter (PLB) were incorporated into a composting mixture containing poultry litter and straw, and GHG emissions were measured in situ during composting using Fourier Transform Infrared Spectroscopy (FTIR). Emissions of N2O from the biochar-amended composting mixtures decreased significantly (P<0.05) soon after commencement of the composting process compared with the non-amended control. The cumulative emissions of N2O over 8weeks in the GWB composting mixture (GWBC), PLB composting mixture (PLBC) and control (no biochar) were 4.2, 5.0 and 14.0gN2O-Nkg-1 of total nitrogen (TN) in composting mixture, respectively (P<0.05). The CH4 emissions were significantly (P<0.05) lower in the GWBC and PLBC treatments than the control during the period from day 8 to day 36, when anaerobic conditions likely prevailed. The cumulative CH4 emissions were 12, 18 and 80mg CH4-Ckg-1 of total carbon (TC) for the GWBC, PLBC and control treatments, respectively, though due to wide variation between replicates this difference was not statistically significant. The cumulative N2O and CH4 emissions were similar between the GWBC and PLBC despite differences in properties of the two biochars. X-ray Photoelectron Spectroscopy (XPS) analysis and SEM imaging of the composted biochars indicated the presence of iron oxide compounds and amine-NH3 on the surface and pores of the biochars (PLB>GWB). The change in nitrogen (N) functional groups on the biochar surface after composting is evidence for sorption and/or reaction with N from labile organic N, mineral N, and gaseous N (e.g. N2O). The concentration of NH4+ increased during the thermophilic phase and then decreased during the maturation phase, while NO3- accumulated during the maturation phase. Total N retained was significantly (P<0.05) higher in the PLBC (740g) and the GWBC (660g) relative to the control (530g). The TC retained was significantly higher in the GWBC (10.0kg) and the PLBC (8.5kg) cf. the control (6.0kg). Total GHG emissions across the composting period were 50, 63 and 183kg CO2-eqt-1 of initial mass of GWBC, PLBC and control (dry weight basis) respectively. These results support the co-composting of biochar to lower net emissions of GHGs while increasing N retention (and fertiliser N value) in the mature compost.
Agyarko-Mintah E
,Cowie A
,Singh BP
,Joseph S
,Van Zwieten L
,Cowie A
,Harden S
,Smillie R
... -
《-》
-
Effectiveness of mixing poultry litter compost with rice husk biochar in mitigating ammonia volatilization and carbon dioxide emission.
Nitrogen-rich materials such as poultry litter (PL) contributes to substantial N and C loss in the form of ammonia (NH3) and carbon dioxide (CO2) during composting. Biochar can act as a sorbent of ammonia (NH3) and CO2 emission released during co-composting. Thus, co-composting poultry litter with rice husk biochar as a bulking agent is a good technique to mitigate NH3 volatilization and CO2 emission. A study was conducted to evaluate the effects of composting the mixtures of poultry litter with rice husk biochar at different ratios on NH3 and CO2 emissions. Four mixtures of poultry litter and rice husk biochar at different rate were composted at 0:1, 0.5:1, 1.3:1 and 2.3:1 ratio of rice husk biochar (RHB): poultry litter (PL) on a dry weight basis to achieve a suitable C/N ratio of 15, 20, 25, and 30, respectively. The results show that composting poultry litter with rice husk biochar can accelerate the breakdown of organic matter, thereby shortening the thermophilic phase compared to composting using poultry litter alone. There was a significant reduction in the cumulative NH3 emissions, which accounted for 78.38%, 94.60%, and 97.30%, for each C/N ratio of 20, 25, and 30. The total nitrogen (TN) retained relative was 75.96%, 85.61%, 90.24%, and 87.89% for each C/N ratio of 15, 20, 25, and 30 at the completion of composting. Total carbon dioxide lost was 5.64%, 6.62%, 8.91%, and 14.54%, for each C/N ratio of 15, 20, 21, and 30. In addition, the total carbon (TC) retained were 66.60%, 72.56%, 77.39%, and 85.29% for 15, 20, 25, and 30 C/N ratios and shows significant difference as compared with the initial reading of TC of the compost mixtures. In conclusion, mixing and composting rice husk biochar in poultry litter with C/N ratio of 25 helps in reducing the NH3 volatilization and CO2 emissions, while reducing the overall operational costs of waste disposal by shortening the composting time alongside nitrogen conservation and carbon sequestration. In formulating the compost mixture with rice husk biochar, the contribution of C and N from the biochar can be neglected in the determination of C/N ratio to predict the rate of mineralization in the compost because biochar has characteristic of being quite inert and recalcitrant in nature.
Alarefee HA
,Ishak CF
,Othman R
,Karam DS
... -
《-》
-
The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilisation from biochar-amended soil.
Ammonia (NH3) volatilisation is one of the most important causes of nitrogen (N) loss in soil-plant systems worldwide. Carbon-based amendments such as biochar have been shown to mitigate NH3 volatilisation in agricultural soils to various degrees. In this study, we investigated the influence of biochar feedstocks (poultry manure, green waste compost, and wheat straw), pyrolysis temperatures (250, 350, 450, 500 and 700°C) and application rates (1 and 2%), on NH3 volatilisation from a calcareous soil. The 15 biochars were chemically characterized, and a laboratory incubation study was conducted to assess NH3 volatilisation from the soil over a period of four weeks. Furthermore, changes to the bacterial and fungal communities were assessed via sequencing of phylogenetic marker genes. The study showed that biochar feedstock sources, pyrolysis temperature, and application rates all affected NH3 volatilisation. Overall, low pyrolysis temperature biochars and higher biochar application rates achieved greater reductions in NH3 volatilisation. A feedstock related effect was also observed, with poultry manure biochar reducing NH3 volatilisation by an average of 53% in comparison to 38% and 35% reductions for biochar from green waste compost and wheat straw respectively. Results indicate that the biogeochemistry underlying biochar-mediated reduction in NH3 volatilisation is complex and caused by changes in soil pH, NH3 sorption and microbial community composition (especially ammonia oxidising guilds).
Mandal S
,Donner E
,Vasileiadis S
,Skinner W
,Smith E
,Lombi E
... -
《-》
-
Effects of different types of biochar on methane and ammonia mitigation during layer manure composting.
Biochar, because of its unique physiochemical properties and sorption capacity, may be an ideal amendment in reducing gaseous emissions during composting process but there has been little information on the potential effects of different types of biochar on undesired gaseous emissions. The objective of this study was to examine the ability and mechanism of different types of biochar, as co-substrate, in mitigating gaseous emission from composting of layer hen manure. The study was conducted in small-scale laboratory composters with the addition of 10% of one of the following biochars: cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar. The results showed that the cumulative NH3 production was significantly reduced by 24.8±2.9, 9.2±1.3, 20.1±2.6, 14.2±1.6, 11.8±1.7% (corrected for initial total N) in the cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar treatments, respectively, compared to the control. Total CH4 emissions was significantly reduced by 26.1±2.3, 15.5±2.1, 22.4±3.1, 17.1±2.1% (corrected for the initial total carbon) for cornstalk biochar, bamboo biochar, woody biochar and coir biochar treatments than the control. Moreover, addition of cornstalk biochar increased the temperature and NO3--N concentration and decreased the pH, NH4+-N and organic matter content throughout the composting process. The results suggested that total volatilization of NH3 and CH4 in cornstalk biochar treatment was lower than the other treatments; which could be due to (i) decrease of pH and higher nitrification, (ii) high sorption capacity for gases and their precursors, such as ammonium nitrogen from composting mixtures, because of the higher surface area, pore volumes, total acidic functional groups and CEC of cornstalk biochar.
Chen W
,Liao X
,Wu Y
,Liang JB
,Mi J
,Huang J
,Zhang H
,Wu Y
,Qiao Z
,Li X
,Wang Y
... -
《-》