Maintained right ventricular pressure overload induces ventricular-arterial decoupling in mice.

来自 PUBMED

作者:

Boehm MLawrie AWilhelm JGhofrani HAGrimminger FWeissmann NSeeger WSchermuly RTKojonazarov B

展开

摘要:

What is the central question of this study? The aim was to investigate whether complementary assessment of non-invasive ultrasound imaging together with closed chest-derived intracardiac pressure-volume catheterization is applicable to mice for an in-depth characterization of right ventricular (RV) function even upon maintained pressure overload. What is the main finding and its importance? Characterization of RV function by the complementary use of echocardiographic imaging together with pressure-volume catheterization reveals ventricular-arterial decoupling upon maintained pressure overload, where RV systolic function correlates with ventricular-arterial coupling rather than contractility, whereas diastolic function correlates well with RV diastolic pressure. This combined approach allows us to phenotype RV function and dysfunction better in genetically modified and/or pharmacologically treated mice. Assessment of right ventricular (RV) function in rodents is a challenge because of the complex RV anatomy and structure. To date, the best characterization of RV function has been achieved by accurate cardiovascular phenotyping, involving a combination of non-invasive imaging and intracardiac pressure-volume measurements. We sought to investigate the feasibility of two complementary phenotyping techniques for the evaluation of RV function in an experimental mouse model of sustained RV pressure overload. Mice underwent either sham surgery (n = 5) or pulmonary artery banding (n = 8) to induce isolated RV pressure overload. After 3 weeks, indices of RV function were assessed by echocardiography (Vevo2100) and closed chest-derived invasive pressure-volume measurements (PVR-1030). Pulmonary artery banding resulted in RV hypertrophy and dilatation accompanied by systolic and diastolic dysfunction. Invasive RV haemodynamic measurements demonstrated an increased end-systolic elastance and arterial elastance after pulmonary artery banding compared with sham operation, resulting in ventricular-arterial decoupling. Regression analysis revealed that tricuspid annular plane systolic excursion is correlated with ventricular-arterial coupling (r² = 0.77, P = 0.002) rather than with RV contractility (r² = -0.61, P = 0.07). Furthermore, the isovolumic relaxation time to ECG-derived R-R interval and the ratio of the early diastolic peak velocity measured by pulsed wave Doppler to the early diastolic peak obtained during tissue Doppler imaging correlate well with RV end-diastolic pressure (r² = 0.87, P = 0.0001 and r² = 0.82, P = 0.0009, respectively). Commonly used indices of systolic RV function are associated with RV-arterial coupling rather than contractility, whereas diastolic indices well correlate with end-diastolic pressure when there is maintained pressure overload.

收起

展开

DOI:

10.1113/EP085963

被引量:

8

年份:

2017

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(238)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读