Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination.

来自 PUBMED

作者:

Thiry JLebrun PVinassa CAdam MNetchacovitch LZiemons EHubert PKrier FEvrard B

展开

摘要:

The purpose of this work was to increase the solubility and the dissolution rate of itraconazole, which was chosen as the model drug, by obtaining an amorphous solid dispersion by hot melt extrusion. Therefore, an initial preformulation study was conducted using differential scanning calorimetry, thermogravimetric analysis and Hansen's solubility parameters in order to find polymers which would have the ability to form amorphous solid dispersions with itraconazole. Afterwards, the four polymers namely Kollidon® VA64, Kollidon® 12PF, Affinisol® HPMC and Soluplus®, that met the set criteria were used in hot melt extrusion along with 25wt.% of itraconazole. Differential scanning confirmed that all four polymers were able to amorphize itraconazole. A stability study was then conducted in order to see which polymer would keep itraconazole amorphous as long as possible. Soluplus® was chosen and, the formulation was fine-tuned by adding some excipients (AcDiSol®, sodium bicarbonate and poloxamer) during the hot melt extrusion process in order to increase the release rate of itraconazole. In parallel, the range limits of the hot melt extrusion process parameters were determined. A design of experiment was performed within the previously defined ranges in order to optimize simultaneously the formulation and the process parameters. The optimal formulation was the one containing 2.5wt.% of AcDiSol® produced at 155°C and 100rpm. When tested with a biphasic dissolution test, more than 80% of itraconazole was released in the organic phase after 8h. Moreover, this formulation showed the desired thermoformability value. From these results, the design space around the optimum was determined. It corresponds to the limits within which the process would give the optimized product. It was observed that a temperature between 155 and 170°C allowed a high flexibility on the screw speed, from about 75 to 130rpm.

收起

展开

DOI:

10.1016/j.ijpharm.2016.10.003

被引量:

20

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(723)

参考文献(0)

引证文献(20)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读