High glucose concentration abrogates sevoflurane post-conditioning cardioprotection by advancing mitochondrial fission but dynamin-related protein 1 inhibitor restores these effects.
摘要:
Hyperglycaemia-induced cell injury is a primary cause of cardiovascular complications in patients with diabetes. In vivo studies demonstrated that sevoflurane post-conditioning (SpostC) was cardioprotective against ischaemia/reperfusion injury, which was blocked by hyperglycaemia. This study investigated whether high glucose concentration abrogated SpostC cardioprotection in vitro by advancing mitochondrial fission and whether mitochondrial division inhibitor-1 (Mdivi-1) restored SpostC cardioprotection in cultured primary neonatal rat cardiomyocytes (NCMs). Primary cultured NCMs in low and high glucose concentrations were subjected to hypoxia/reoxygenation (H/R) injury. SpostC was carried out by adding 2.4% sevoflurane to the cells at the beginning of reoxygenation for 15 min. Cell viability, lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening level, as well as fission- and fusion-related proteins, were measured after H/R injury. Mdivi-1 treatment was performed 40 min before hypoxia to inhibit DRP1. SpostC protected cultured cardiomyocytes by increasing cell viability and reducing the LDH level and cell death following H/R, but high glucose concentration eliminated the cardioprotective effect. High glucose concentration abrogated SpostC cardioprotection via mitochondrial fragmentation (evidenced by decreased mitochondrial interconnectivity and elongation) and facilitation of mPTP opening. Decreased mitochondrial membrane potential was investigated with increased DRP1, FIS1 and MFN2 and decreased MFN1 and OPA1 expressions. Mdivi-1 (100 μmol L-1 ) inhibited excessive mitochondrial fission and restored the cardioprotective effect of SpostC in high glucose conditions. SpostC-induced cardioprotection against H/R injury was impaired under high glucose concentrations, but the inhibition of excess mitochondrial fission restored these effects.
收起
展开
DOI:
10.1111/apha.12812
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(249)
参考文献(0)
引证文献(29)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无