LAMSA: fast split read alignment with long approximate matches.

来自 PUBMED

作者:

Liu BGao YWang Y

展开

摘要:

Read length is continuously increasing with the development of novel high-throughput sequencing technologies, which has enormous potentials on cutting-edge genomic studies. However, longer reads could more frequently span the breakpoints of structural variants (SVs) than that of shorter reads. This may greatly influence read alignment, since most state-of-the-art aligners are designed for handling relatively small variants in a co-linear alignment framework. Meanwhile, long read alignment is still not as efficient as that of short reads, which could be also a bottleneck for the upcoming wide application. We propose long approximate matches-based split aligner (LAMSA), a novel split read alignment approach. It takes the advantage of the rareness of SVs to implement a specifically designed two-step strategy. That is, LAMSA initially splits the read into relatively long fragments and co-linearly align them to solve the small variations or sequencing errors, and mitigate the effect of repeats. The alignments of the fragments are then used for implementing a sparse dynamic programming-based split alignment approach to handle the large or non-co-linear variants. We benchmarked LAMSA with simulated and real datasets having various read lengths and sequencing error rates, the results demonstrate that it is substantially faster than the state-of-the-art long read aligners; meanwhile, it also has good ability to handle various categories of SVs. LAMSA is available at https://github.com/hitbc/LAMSA CONTACT: Ydwang@hit.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.

收起

展开

DOI:

10.1093/bioinformatics/btw594

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(498)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读