-
Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification.
Can supplementation of media with a glutathione (GSH) donor, glutathione ethyl ester (GEE), prior to vitrification protect the mouse oocyte from oxidative damage and critical changes in redox homeostasis, and thereby improve cryotolerance?
GEE supplementation supported redox regulation, rapid recovery of spindle and chromosome alignment after vitrification/warming and improved preimplantation development of mouse metaphase II (MII) oocytes.
Cryopreservation may affect mitochondrial functionality, induce oxidative stress, and thereby affect spindle integrity, chromosome segregation and the quality of mammalian oocytes. GEE is a membrane permeable GSH donor that promoted fertilization and early embryonic development of macaque and bovine oocytes after IVM.
Two experimental groups consisted of (i) denuded mouse germinal vesicle (GV) oocytes that were matured in vitro in the presence or absence of 1 mM GEE (IVM group 1) and (ii) in vivo ovulated (IVO) MII oocytes that were isolated from the ampullae and exposed to 1 mM GEE for 1 h prior to vitrification (IVO group 2). Recovery of oocytes from both groups was followed after CryoTop vitrification/warming for up to 2 h and parthenogenetic activation.
Reactive oxygen species (ROS), spindle morphology and chromosome alignment were analyzed by confocal laser scanning microscopy (CLSM) and polarization microscopy in control and GEE-supplemented MII oocytes. The relative overall intra-oocyte GSH content was assessed by analysis of monochlorobimane (MBC)-GSH adduct fluorescence in IVM MII oocytes. The GSH-dependent intra-mitochondrial redox potential (EmGSH) of IVM MII oocytes was determined after microinjection with specific mRNA at the GV stage to express a redox-sensitive probe within mitochondria (mito-Grx1-roGFP2). The absolute negative redox capacity (in millivolts) was determined by analysis of fluorescence of the oxidized versus the reduced form of sensor by CLSM and quantification according to Nernst equation. Proteome analysis was performed by quantitative 2D saturation gel electrophoresis (2D DIGE). Since microinjection and expression of redox sensor mRNA required removal of cumulus cells, and IVM of denuded mouse oocytes in group 1 induces zona hardening, the development to blastocysts was not assessed after IVF but instead after parthenogenetic activation of vitrified/warmed MII oocytes from both experimental groups.
IVM of denuded mouse oocytes in the presence of 1 mM GEE significantly increased intra-oocyte GSH content. ROS was not increased by CryoTop vitrification but was significantly lower in the IVM GEE group compared to IVM without GEE before vitrification and after recovery from vitrification/warming (P < 0.001). Vitrification alone significantly increased the GSH-dependent intra-mitochondrial redox capacity after warming (EmGSH, P < 0.001) in IVM oocytes, presumably by diffusion/uptake of cytoplasmic GSH into mitochondria. The presence of 1 mM GEE during IVM increased the redox capacity before vitrification and there was no further increase after vitrification/warming. None of the reproducibly detected 1492 spots of 2D DIGE separated proteins were significantly altered by vitrification or GEE supplementation. However, IVM of denuded oocytes significantly affected spindle integrity and chromosome alignment right after warming from vitrification (0 h) in group 1 and spindle integrity in group 2 (P < 0.05). GEE improved recovery in IVM group as numbers of oocytes with unaligned chromosomes and aberrant spindles was not significantly increased compared to unvitrified controls. The supplementation with GEE for 1 h before vitrification also supported more rapid recovery of spindle birefringence. GEE improved significantly development to the 2-cell stage for MII oocytes that were activated directly after vitrification/warming in both experimental groups, and also the blastocyst rate in the IVO GEE-supplemented group compared to the controls (P < 0.05).
None LIMITATIONS, REASONS FOR CAUTION: The studies were carried out in a mouse model, in IVM denuded rather than cumulus-enclosed oocytes, and in activated rather than IVF MII oocytes. Whether the increased GSH-dependent intra-mitochondrial redox capacity also improves male pronuclear formation needs to be studied further experimentally. The influence of GEE supplementation requires also further examination and optimization in human oocytes before it can be considered for clinical ART.
Although GEE supplementation did not alter the proteome at MII, the GSH donor may support cellular homeostasis and redox regulation and, thus, increase developmental competence. While human MII oocyte vitrification is an established procedure, GEE might be particularly beneficial for oocytes that suffer from oxidative stress and reduced redox capacity (e.g. aged oocytes) or possess low GSH due to a reduced supply of GSH from cumulus. It might also be of relevance for immature human oocytes that develop without cumulus to MII in vitro (e.g. in ICSI cycles) for ART.
The study has been supported by the German Research Foundation (DFG FOR 1041; EI 199/3-2). There are no conflict of interests.
Trapphoff T
,Heiligentag M
,Simon J
,Staubach N
,Seidel T
,Otte K
,Fröhlich T
,Arnold GJ
,Eichenlaub-Ritter U
... -
《-》
-
l-carnitine supplementation during vitrification of mouse germinal vesicle stage-oocytes and their subsequent in vitro maturation improves meiotic spindle configuration and mitochondrial distribution in metaphase II oocytes.
How does l-carnitine (LC) supplementation during vitrification and in vitro maturation (IVM) of germinal vesicle stage (GV)-oocytes improve the developmental competence of the resultant metaphase II (MII) oocytes?
LC supplementation during both vitrification of GV-oocytes and their subsequent IVM improved nuclear maturation as well as meiotic spindle assembly and mitochondrial distribution in MII oocytes.
Vitrification of GV-oocytes results in a lower success rate of blastocyst development compared with non-vitrified oocytes. LC supplementation during both vitrification and IVM of mouse GV-oocytes significantly improves embryonic development after IVF.
GV-oocytes were collected from (B6.DBA)F1 and B6 mouse strains and subjected to vitrification and warming with or without 3.72 mM LC supplementation. After IVM with or without LC supplementation, the rate of nuclear maturation and the quality of MII oocytes were evaluated. At least 20 oocytes/group were examined, and each experiment was repeated at least three times. All experiments were conducted during 2013-2014.
Extrusion of the first polar body in IVM oocytes was observed as an indication of nuclear maturation. Spindle assembly and chromosomal alignment were examined by immunostaining of α-tubulin and nuclear staining with 4,6-diamidino-2-phenylindole (DAPI). Mitochondrial distribution and oxidative activity were measured by staining with Mitotracker Green Fluorescence Mitochondria (Mitotracker Green FM) and chloromethyltetramethylrosamine (Mitotracker Orange CMTMRos), respectively. ATP levels were determined by using the Bioluminescent Somatic Cell Assay Kit.
LC supplementation during both vitrification and IVM of GV-oocytes significantly increased the proportions of oocytes with normal MII spindles to the levels comparable with those of non-vitrified oocytes in both mouse strains. While vitrification of GV-oocytes lowered the proportions of MII oocytes with peripherally concentrated mitochondrial distribution compared with non-vitrified oocytes, LC supplementation significantly increased the proportion of such oocytes in the (B6.DBA)F1 strain. LC supplementation decreased the proportion of oocytes with mitochondrial aggregates in both vitrified and non-vitrified oocytes in the B6 strain. The oxidative activity of mitochondria was mildly decreased by vitrification and drastically increased by LC supplementation irrespective of vitrification in both mouse strains. No change was found in ATP levels irrespective of vitrification or LC supplementation. Results were considered to be statistically significant at P < 0.05 by either χ(2)- or t-test.
It remains to be tested whether beneficial effect of LC supplementation during vitrification and IVM of GV-oocytes leads to fetal development and birth of healthy offspring after embryo transfer to surrogate females.
This protocol has the potential to improve the quality of vitrified human oocytes and embryos during assisted reproduction treatment.
Partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and Mitacs Elevate Postdoctoral Fellowship, Canada.
Moawad AR
,Xu B
,Tan SL
,Taketo T
... -
《-》
-
Role of Sirt3 in mitochondrial biogenesis and developmental competence of human in vitro matured oocytes.
Does Sirt3 dysfunction result in poor developmental outcomes for human oocytes after in vitro maturation (IVM)?
Inefficient Sirt3 expression induced decreased mitochondrial DNA copy number and biogenesis, and therefore impaired the developmental competence of human IVM oocytes.
Cytoplasmic immaturity in IVM oocytes may lead to reduced developmental competence. Mitochondrial dysfunction results in the accumulation of free radicals and leads to DNA mutations, protein damage, telomere shortening and apoptosis. SIRT3 (in the Sirtuin protein family) has emerged as a mitochondrial fidelity protein that directs energy generation and regulates reactive oxygen species scavenging proteins.
In vivo matured metaphase II (IVO-MII) oocytes and IVM-MII oocytes were donated by 324 infertile patients undergoing assisted reproductive technology cycles (12 patients for 60 IVO oocytes, and 312 patients for 403 IVM oocytes). Five oocytes each in the germinal vesicle (GV), IVM and IVO groups were compared with respect to mRNA levels for Sirt1-7 mRNA, and five samples at each developmental stage were analysed for Sirt3 mRNA. IVM-MII oocytes were injected with in vitro transcribed mRNA (n = 59) or small interfering RNA (siRNA) (n = 78). In human and mouse, IVM, mRNA-injection IVM, and siRNA-injection IVM groups (n = 5 each) were analysed for mitochondrial DNA copy number and abundance of Sirt3 and Pgc1α (an inducer of mitochondrial biogenesis) mRNAs. Human blastocysts in the IVO (n = 12), IVM (n = 9), mRNA-injection IVM (n = 13) and siRNA-injection IVM (n = 6) groups were used to generate embryonic stem cells (ESCs). In addition, 587 IVO-MII and 1737 IVM-MII oocytes from 83 mice were collected to compare the preliminary human oocyte data with another species.
mRNA abundance was analysed by single-cell real-time PCR. Karyotyping of human embryos was performed with an array comparative genomic hybridization method, and that of ESCs by cytogenetic analysis. The function of the Sirt3 gene was investigated using siRNA and in vitro transcribed mRNA injection. Markers of ESCs were identified using immunofluorescence.
A retrospective analysis revealed a higher spontaneous abortion rate (P < 0.01) and decrease in high quality embryo rate (P < 0.01) in patients with IVM versus controlled ovarian stimulation (COS) cycles. A decrease in abundance of Sirt3 mRNA (P < 0.01) and mitochondrial biogenesis (P < 0.05) were identified in human IVM compared with IVO oocytes. The developmental potential of human IVM-MII oocytes to the blastocyst stage was significantly reduced when Sirt3 mRNA was inhibited by siRNA (P < 0.05 versus IVM-MII group) but could be up-regulated by injection of Sirt3 mRNAs. Compared with IVO-MII group, comparable generation efficiency of human ESCs can be obtained using blastocysts from IVM-MII oocytes with Sirt3 mRNA injection. Sirt3 mRNA was significantly increased in mouse zygotes after IVF (P < 0.001 versus MII oocytes) but gradually declined until the blastocyst stage. In mice, lower Sirt3 mRNA levels were observed IVM-MII oocytes and preimplantation embryos compared with in vivo controls, and mitochondrial biogenesis and the developmental efficiency from oocytes to blastocyst were affected by the abundance of Sirt3 mRNA in accordance with human. Therefore a similar role for Sirt3 mRNA in IVM-MII oocytes was observed in mouse and human.
The couples in the study had a variety of different simple and complex factors causing infertility. Additional studies with a larger number of oocytes are required to confirm the present results owing to the limited number of human oocytes in the present study.
To our knowledge, this is the first study investigating a role of the Sirt3 gene in mitochondrial biogenesis and the developmental competence of human IVM-MII oocytes. The observation may help to improve clinical application of the IVM procedure.
This work was supported in part by the National Natural Science Foundation of Key Program (31230047), Ministry of Science and Technology of China Grants (973 program; 2014CB943203), the National Natural Science Foundation of General Program (31371521 and 81571400), Beijing Nova Program (xxjh2015011), and Specialized Research Fund for the Doctoral Program of Higher Education (20120001130008) and the National Natural Science Foundation of Young Scholar (31501201). The authors have declared that no conflict of interest exists.
Zhao HC
,Ding T
,Ren Y
,Li TJ
,Li R
,Fan Y
,Yan J
,Zhao Y
,Li M
,Yu Y
,Qiao J
... -
《-》
-
Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes.
Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)?
Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance.
Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote.
Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM).
GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE).
The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization.
We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging.
Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro.
The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Trapphoff T
,Heiligentag M
,Dankert D
,Demond H
,Deutsch D
,Fröhlich T
,Arnold GJ
,Grümmer R
,Horsthemke B
,Eichenlaub-Ritter U
... -
《-》
-
Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions.
Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators?
Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality.
Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development.
This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes.
Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis.
Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of pre-IVM duration. The final blastocyst yields (proportion of blastocysts/immature oocyte) were 26.3% for the control, compared with 39.2, 35.2 and 34.2%, for the 2, 4 and 6 h pre-IVM FSK + IBMX treatments, respectively. In contrast to standard IVM (control), pre-IVM with cAMP modulators maintained open gap junctions between cumulus cells and oocytes for the duration (6 h) of pre-IVM examined, and persisted for a further 8 h in the IVM phase. Cyclic AMP-modulated pre-IVM increased intra-oocyte GSH levels at the completion of both pre-IVM and IVM, in a pre-IVM duration-dependent manner (P < 0.05), which was ablated when GJC was blocked using CBX (P < 0.05). By 4 h of pre-IVM treatment with cAMP modulators, oocyte H2O2 levels were reduced compared the control (P < 0.05), although this beneficial effect was lost when oocytes were co-treated with BSO. Inhibiting glutathione synthesis with BSO during pre-IVM ablated any positive benefits of cAMP-mediated pre-IVM on oocyte developmental competence (P < 0.01).
It is unclear if the improvement in oocyte antioxidant defence and developmental competence reported here is due to direct transfer of total and/or reduced glutathione from cumulus cells to the oocyte via gap junctions, or whether a GSH synthesis signal and/or amino acid substrates are supplied to the oocyte via gap junctions. Embryo transfer experiments are required to determine if the cAMP-mediated improvement in blastocyst rates leads to improved live birth rates.
IVM offers significant benefits to infertile and cancer patients and has the potential to significantly alter ART practice, if IVM efficiency in embryo production could be improved closer to that of conventional IVF (using ovarian hyperstimulation). Pre-IVM with cAMP modulators is a simple and reliable means to improve IVM outcomes.
This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1007551, 627007, 1008137, 1023210) and by scholarships from the Chinese Scholarship Council (CSC) awarded to H.J.L. and the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad awarded to S.S. The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. We acknowledge partial support from the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Li HJ
,Sutton-McDowall ML
,Wang X
,Sugimura S
,Thompson JG
,Gilchrist RB
... -
《-》