Plasma membrane-bound G protein-coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of toll-like receptor 4 signaling in mice.

来自 PUBMED

作者:

Yang HZhou HZhuang LAuwerx JSchoonjans KWang XFeng CLu L

展开

摘要:

The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) displays varied levels of expression in different tissues. TGR5-induced liver protection has been demonstrated during several liver diseases, except during ischemia/reperfusion injury (IRI). Male adult wild-type and TGR5 knockout (KO) mice were subjected to liver partial warm ischemia/reperfusion. Hepatic injury was evaluated based on serum alanine aminotransferase and serum aspartate aminotransferase. Liver histological injury and inflammatory cell infiltration were evaluated in tissue sections using liver immunohistochemical analysis. We used quantitative real-time polymerase chain reaction to analyze the liver expression of inflammatory cytokines. The toll-like receptor 4 (TLR4) signaling pathway and its related apoptotic molecules were investigated after reperfusion. Moreover, the effect of TGR5 on inflammation was determined with TGR5+/+ or TGR5-/- primary bone marrow-derived macrophages in vitro. TGR5 significantly attenuated liver damage after IRI. As demonstrated by in vivo experiments, TGR5 significantly reduced the up-regulation of the TLR4-nuclear factor kappa B (NF-κB) pathway and inhibited caspase 8 activation after IRI. Later experiments showed that TGR5 KO significantly increased the expression of TLR4-NF-κB signaling molecules and promoted hepatocellular apoptosis. In addition, in vitro experiments showed that overexpression of 6alpha-ethyl-23(S)-methylcholic acid (INT-777)-activated TGR5 directly down-regulated tumor necrosis factor α (TNF-α) and interleukin (IL) 6 expression but up-regulated IL10 expression in hypoxia/reoxygenation-induced primary TGR5+/+ macrophages. Moreover, the expression of TLR4-NF-κB signaling molecules was significantly inhibited by the activation of TGR5. Importantly, these results were completely reversed in primary TGR5-/- macrophages. This work is the first to provide evidence for a TGR5-inhibited inflammatory response in IRI through suppression of the TLR4-NF-κB pathway, which may be critical in reducing related inflammatory molecules and modulating innate inflammation. Liver Transplantation 23:63-74 2017 AASLD.

收起

展开

DOI:

10.1002/lt.24628

被引量:

23

年份:

2017

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1012)

参考文献(0)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读