Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis following cold stress in Elymus nutans Griseb.

来自 PUBMED

作者:

Fu JGates RNXu YHu T

展开

摘要:

We studied the effects of cold stress (5°C) and re-warming (25°C) on gas exchange, photosystem II, key photosynthetic enzyme activities, gene expression, and carbohydrate metabolite concentrations in two Elymus nutans genotypes differing in cold resistance (DX, cold-tolerant and ZD, cold-sensitive). Cold stress led to irreversible reductions in photosynthetic rate. This reduction was accompanied by declining stomatal and mesophyll conductance (gs and gm), transpiration rate (Tr) and photochemical efficiency in both genotypes, however there were smaller decreases in DX than in ZD. Cold-tolerant DX maintained higher photosynthetic enzyme activities and transcript levels, as well as higher reducing sugar concentrations and sucrose accumulation. The relationship between Pn and internal leaf CO2 concentration (Pn/Ci curve) during cold and re-warming was analyzed to estimate the relative influence of stomatal and non-stomatal components on photosynthesis. Stomatal limitation, non-stomatal limitation, and CO2 compensation point (CP) increased in both genotypes under cold stress, but to a lesser extent in DX. Maximum CO2 assimilation rate (Pmax), and carboxylation efficiency (CE) declined, but DX had significantly higher levels of Pmax and CE than ZD. Following cold-stress recovery, the maximum quantum yield of PSII (Fv/Fm), apparent electron transport rate (ETR), Rubisco activity, Rubisco activation state and CE in DX resumed to the control levels. In contrast, Pn, Pmax, gs, gm, and Tr recovered only partially for DX, suggesting that incomplete recovery of photosynthesis in DX may be mainly related to diffusion limitations. Higher Rubisco large subunit (RbcL) and Rubisco activase (RCA) transcript levels, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, and carbohydrate accumulation contributed to higher photosynthetic recovery in DX. These results indicate that the maintenance of higher Pn and Pmax under cold stress and recovery in cold-tolerant DX could be attributed to reduced diffusion limitations and rapid recuperation of metabolic factors.

收起

展开

DOI:

10.1016/j.jphotobiol.2016.08.008

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(579)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读