-
Danshen injection ameliorates STZ-induced diabetic nephropathy in association with suppression of oxidative stress, pro-inflammatory factors and fibrosis.
Diabetic nephropathy (DN) is one of the most frequent complications in diabetes mellitus. This study aimed to explore whether Danshen injection is protective to renal tissue in diabetes. Intraperitoneal injection of streptozotocin (STZ) (60mg/kg) was used to induce diabetes in rats. Some STZ-induced diabetic rats were also intraperitoneally injected with Danshen solution at two different dosages (0.5 or 1ml/kg/day) for 6weeks. Our results showed that serum creatinine (sCr) and blood urea nitrogen were significantly increased in STZ-induced diabetic rats, which was alleviated upon Danshen injection. Danshen injection was also found to ameliorate hypertrophy and dilatation of renal tubule and glomeruli possibly by decreasing the expression of collagen and fibronectin in association with suppression of TGF-β1/Smad pathway. Further investigation revealed that Danshen injection could increase the activity of superoxide dismutase (SOD), and reduce reactive oxygen species (ROS) and malondialdehyde (MDA) levels in STZ-induced diabetic rats, indicating suppression of oxidative stress. In addition, we also found that Danshen injection could suppress IκB/NF-κB signaling pathway and reduce the level of a number of pro-inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the diabetic renal tissue, indicating suppression of inflammation. In conclusion, our results demonstrated that Danshen injection may rescue STZ-induced diabetic nephropathy, possibly via suppressing the oxidative stress, inflammatory responses and fibrosis progression.
Xu L
,Shen P
,Bi Y
,Chen J
,Xiao Z
,Zhang X
,Wang Z
... -
《-》
-
Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.
Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.
Malik S
,Suchal K
,Khan SI
,Bhatia J
,Kishore K
,Dinda AK
,Arya DS
... -
《-》
-
BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-κB pathway.
Diabetic nephropathy is a serious microvascular complication for patients associated with diabetes mellitus. Recent studies have suggested that NF-κB is the main transcription factor for the inflammatory response mediated progression of diabetic nephropathy. Hence, the present study is hypothesized to explore the renoprotective nature of BAY 11-7082 an IκB phosphorylation inhibitor on Streptozotocin (STZ) induced diabetic nephropathy in Sprague-Dawley (SD) rats. Male SD rats were divided into five groups, group I sham control, group II drug control, group III diabetic control (STZ 50mg/kg), group IV and V are test drug groups to which a single dose of STZ 50mg/kg was injected initially and later received BAY 11-7082 1mg/kg and 3mg/kg, respectively from 5th to 8th week. Eight weeks after STZ injection, diabetic rats exhibited significant renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, urea nitrogen and creatinine, which were reversed to near normal by BAY 11-7082. BAY 11-7082 treated rats showed significant improvement in the decreased enzymatic antioxidant SOD, non-enzymatic antioxidant GSH levels, and elevated lipid peroxidation and nitric oxide levels as observed in the diabetic rats. BAY 11-7082 treatment was found to significantly recover kidney histological architecture in the diabetic rats. Altered levels of inflammatory cytokines like TNF-α, IL-1β, IL-6 and nuclear transcriptional factor subunit NF-κB p65 were reverted to the normal level upon treatment with BAY 11-7082. Our results suggest that by limiting the activation of NF-κB, thereby reducing the expression of inflammatory cytokines and by inhibiting the oxidative damage BAY 11-7082 protect the rats against diabetic nephropathy.
Kolati SR
,Kasala ER
,Bodduluru LN
,Mahareddy JR
,Uppulapu SK
,Gogoi R
,Barua CC
,Lahkar M
... -
《-》
-
Renoprotection of Danshen Injection on streptozotocin-induced diabetic rats, associated with tubular function and structure.
Danshen Injection, the aqueous extracts of Radix Salvia miltiorrhiza (S. miltiorrhiza), is one of the most commonly used traditional Chinese herbs in chronic renal failure treatment. In present study, the mechanism of the renoprotective effect of Danshen Injection was analyzed on streptozocin (STZ)-induced diabetic rats.
Diabetic experimental model was established in male Sprague-Dawley (SD) rats by intraperitoneal injection of STZ. Rats with blood glucose concentration of higher than 300 mg/dl were intraperitoneally administered with Danshen Injection at a dose of 0.78 ml/kgday. The blood glucose, 24h urinary protein excretion, serum creatinine (sCr), blood urea nitrogen (BUN), advanced glycation end products (AGEs), lipid peroxide (LPO), antioxidant enzyme of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), transforming growth factor-β1 (TGF-β1), and histomorphological changes in kidney of diabetic rats were analyzed during the course of Danshen Injection administration, as well as the tubular function index of albumin reabsorption of fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA).
The intraperitoneal administration of Danshen Injection could ameliorate the physiological dysfunctions of increased 24h urinary protein excretion((48.21 ± 8.04)%), sCr((39.4 ± 3.7)%), and BUN((43.37 ± 6.74)%), alleviate the ultrastructural abnormalities of hypertrophy, matrix expansion, and fibrosis in glomerulus, decrease the TGF-β1 expression, AGEs and LPO accumulation, and increase the activity of SOD and GSH-Px in kidney of diabetic rats, but did not significantly influence the blood glucose. Besides these, the Danshen Injection administration also partly restored the decrease of megalin expression in tubules and reabsorptive function of FITC-BSA, in diabetic rats.
The renoprotection of Danshen Injection on diabetic rats was associated with the preservation of tubular function and structure from the hyperglycemia induced toxicities of inappropriate cytokines secretion, oxidative stress, advanced glycation stress, and megalin expression deletion.
Yin D
,Yin J
,Yang Y
,Chen S
,Gao X
... -
《-》
-
Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway.
Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis.
Ji X
,Li C
,Ou Y
,Li N
,Yuan K
,Yang G
,Chen X
,Yang Z
,Liu B
,Cheung WW
,Wang L
,Huang R
,Lan T
... -
《-》