Ctp1-dependent clipping and resection of DNA double-strand breaks by Mre11 endonuclease complex are not genetically separable.

来自 PUBMED

作者:

Jensen KLRussell P

展开

摘要:

Homologous recombination (HR) repair of programmed meiotic double-strand breaks (DSBs) requires endonucleolytic clipping of Rec12(Spo11)-oligonucleotides from 5' DNA ends followed by resection to generate invasive 3' single-stranded DNA tails. The Mre11-Rad50-Nbs1 (MRN) endonuclease and Ctp1 (CtIP and Sae2 ortholog) are required for both activities in fission yeast but whether they are genetically separable is controversial. Here, we investigate the mitotic DSB repair properties of Ctp1 C-terminal domain (ctp1-CD) mutants that were reported to be specifically clipping deficient. These mutants are sensitive to many clastogens, including those that create DSBs devoid of covalently bound proteins. These sensitivities are suppressed by genetically eliminating Ku nonhomologous end-joining (NHEJ) protein, indicating that Ctp1-dependent clipping by MRN is required for Ku removal from DNA ends. However, this rescue requires Exo1 resection activity, implying that Ctp1-dependent resection by MRN is defective in ctp1-CD mutants. The ctp1-CD mutants tolerate one but not multiple broken replication forks, and they are highly reliant on the Chk1-mediated cell cycle checkpoint arrest, indicating that HR repair is inefficient. We conclude that the C-terminal domain of Ctp1 is required for both efficient clipping and resection of DSBs by MRN and these activities are mechanistically similar.

收起

展开

DOI:

10.1093/nar/gkw557

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(166)

参考文献(37)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读