Fullerene (C60)-based tumor-targeting nanoparticles with "off-on" state for enhanced treatment of cancer.

来自 PUBMED

作者:

Shi JWang BWang LLu TFu YZhang HZhang Z

展开

摘要:

The traditional drug delivery systems always suffer from the unexpected drug release during circulation and the sluggish release of drug in target site. To address the problem, an "off-on" type drug delivery system with precise control was developed in this study. Doxorubicin (DOX) was covalently conjugated to fullerene (C60) nanoaggregates via a reactive oxygen species (ROS)-sensitive thioketal linker (C60-DOX NPs), and then the hydrophilic shell (Distearoyl-sn-glycero-3-phosphoethanolamine-PEG-CNGRCK2HK3HK11, DSPE-PEG-NGR) was attached to the outer surface of C60-DOX, giving it (C60-DOX-NGR NP) excellent stability in physiological solutions and active tumor-targeting capacity. C60-DOX-NGR NPs were able to entrap DOX efficiently even at acidic environment (pH5.5) when they were "off" state. In sharp contrast, when the NPs were "on" state, a large number of ROS were generated by C60, leading to the breaking of ROS-sensitive linker, thereby enabling the burst release of DOX. The "off" or "on" state of C60-DOX-NGR NPs could be precisely remote-controlled by a 532nm laser (at a low power density) with a high spatial/temporal resolution. In the in vivo and in vitro studies, the C60-based drug delivery system with "off-on" state exhibited a high antitumor efficacy and a low toxicity to normal tissues due to its tumor-targeting ability, remote-controlled drug release property and combined therapeutic effect (photodynamic therapy combined with chemotherapy).

收起

展开

DOI:

10.1016/j.jconrel.2016.06.010

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(390)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读