FGF receptors: cancer biology and therapeutics.
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Katoh M
,Nakagama H
《-》
The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder.
The human fibroblast growth factor family consists of 22 factors and five transmembrane receptors. Of the 22 factors, eighteen are secreted while four of them function exclusively within the cell. Four of the fibroblast growth factor receptors (FGFRs) possess intracellular protein-tyrosine kinase activity while the fifth (FGFRL1) has a short 105-residue intracellular non-enzymatic component. The FGFR protein kinase domain consists of a bi-lobed structure that is similar to that of all other protein kinases. FGFR gene alterations occur in a wide variety of cancers including those of the urinary bladder, breast, ovary, prostate, endometrium, lung, and stomach. The majority (66 %) of FGFR gene alterations involve gene amplifications, followed by mutations (26 %), and rearrangements that produce fusion proteins (8 %). Erdafitinib was the first orally effective FGFR antagonist approved by the FDA (2019) for the treatment of advanced cancer, that of the urinary bladder. FGF23 suppresses phosphate reabsorption in the proximal tubules of the kidney; FGF23 blockade allows phosphate reabsorption to occur and leads to elevated serum phosphate levels. Erdafitinib and several other, but not all, FGFR antagonists produce hyperphosphatemia. Erdafitinib binds to an inactive DGF-Din conformation of FGFR1 and is classified as a type I½ inhibitor. Similarly, dovitinib, AZD4547, CH5183284, infigratinib, lenvatinib, LY2874455, and lucitanib are type I½ inhibitors. The inactive conformations contain an autoinhibitory brake that is made up of three main residues: an asparagine (N) within the αC-β4 back loop, a glutamate (E) corresponding to the second hinge residue, and a lysine (K) in the β8-strand (the NEK triad). PDGFRα/β, Kit, CSF1R, VEGFR1/2/3, Flt3, Tek, and Tie protein kinases are also regulated by a similar autoinhibitory brake mechanism. Ponatinib binds to FGFR4 in a DFG-Dout conformation and is classified as a type II inhibitor. Futibatinib, roblitinib, H3B-6527, fisogatinib, and PRN1371 bind covalently to their FGFR target and are classified as type VI inhibitors. Nintedanib, pazopanib, pemigatinib, rogaratinib, fisogatinib, and PRN1371 are FGFR inhibitors lacking drug-enzyme crystal structures. All of the aforementioned FGFR antagonists are orally effective. The development of FGFR inhibitors has lagged behind those of other receptor protein-tyrosine kinases. However, the FDA approval of erdafitinib for the treatment of urinary bladder cancers may stimulate additional work targeting the many other FGFR-driven neoplasms.
Roskoski R Jr
《-》
Evaluation of FGFR targeting in breast cancer through interrogation of patient-derived models.
Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor-stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs.
MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival.
Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated 'omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target.
This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.
Chew NJ
,Lim Kam Sian TCC
,Nguyen EV
,Shin SY
,Yang J
,Hui MN
,Deng N
,McLean CA
,Welm AL
,Lim E
,Gregory P
,Nottle T
,Lang T
,Vereker M
,Richardson G
,Kerr G
,Micati D
,Jardé T
,Abud HE
,Lee RS
,Swarbrick A
,Daly RJ
... -
《-》