Predictive value of plasma neutrophil gelatinase-associated lipocalin for acute renal failure in patients with severe sepsis.

来自 PUBMED

作者:

Huang CYShih CCChung KKao KCWu HP

展开

摘要:

Predicting acute renal failure in patients with severe sepsis is important, because patients may need renal replacement therapy (RRT). Neutrophil gelatinase-associated lipocalin (NGAL) has been evaluated for its ability to detect and predict acute kidney injury (AKI) in critically ill patients. This study aimed to assess the predictive value of plasma NGAL for acute renal failure in adult severely septic patients. Thirty healthy adults and 85 adult patients admitted to the medical intensive care unit (ICU) were enrolled. Serum creatinine, plasma NGAL, and interleukin (IL)-6, IL-10, and IL-17 levels were evaluated. AKI was classified as Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE). RIFLE-Failure (RIFLE-F) developed in 30 of 76 (39.5%) patients with severe sepsis without chronic kidney disease within 7 days after ICU admission. Serum creatinine, plasma NGAL, IL-6, and IL-10 could predict RIFLE-F within 7 days after ICU admission. The discriminatory power of plasma NGAL was not significant for predicting hospital mortality. The area under the receiver operating characteristic curve of plasma NGAL was not higher than that of serum creatinine in predicting RIFLE-F within 7 days. Plasma NGAL is a useful tool for predicting acute renal failure in adult patients with severe sepsis. Serum creatinine has a similar ability to detect RIFLE-F occurrence.

收起

展开

DOI:

10.1016/j.jcma.2016.03.006

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(521)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读