EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis.
PD-1 inhibitors are established agents in the management of non-small cell lung cancer (NSCLC); however, only a subset of patients derives clinical benefit. To determine the activity of PD-1/PD-L1 inhibitors within clinically relevant molecular subgroups, we retrospectively evaluated response patterns among EGFR-mutant, anaplastic lymphoma kinase (ALK)-positive, and EGFR wild-type/ALK-negative patients.
We identified 58 patients treated with PD-1/PD-L1 inhibitors. Objective response rates (ORR) were assessed using RECIST v1.1. PD-L1 expression and CD8(+) tumor-infiltrating lymphocytes (TIL) were evaluated by IHC.
Objective responses were observed in 1 of 28 (3.6%) EGFR-mutant or ALK-positive patients versus 7 of 30 (23.3%) EGFR wild-type and ALK-negative/unknown patients (P = 0.053). The ORR among never- or light- (≤10 pack years) smokers was 4.2% versus 20.6% among heavy smokers (P = 0.123). In an independent cohort of advanced EGFR-mutant (N = 68) and ALK-positive (N = 27) patients, PD-L1 expression was observed in 24%/16%/11% and 63%/47%/26% of pre-tyrosine kinase inhibitor (TKI) biopsies using cutoffs of ≥1%, ≥5%, and ≥50% tumor cell staining, respectively. Among EGFR-mutant patients with paired, pre- and post-TKI-resistant biopsies (N = 57), PD-L1 expression levels changed after resistance in 16 (28%) patients. Concurrent PD-L1 expression (≥5%) and high levels of CD8(+) TILs (grade ≥2) were observed in only 1 pretreatment (2.1%) and 5 resistant (11.6%) EGFR-mutant specimens and was not observed in any ALK-positive, pre- or post-TKI specimens.
NSCLCs harboring EGFR mutations or ALK rearrangements are associated with low ORRs to PD-1/PD-L1 inhibitors. Low rates of concurrent PD-L1 expression and CD8(+) TILs within the tumor microenvironment may underlie these clinical observations. Clin Cancer Res; 22(18); 4585-93. ©2016 AACRSee related commentary by Gettinger and Politi, p. 4539.
Gainor JF
,Shaw AT
,Sequist LV
,Fu X
,Azzoli CG
,Piotrowska Z
,Huynh TG
,Zhao L
,Fulton L
,Schultz KR
,Howe E
,Farago AF
,Sullivan RJ
,Stone JR
,Digumarthy S
,Moran T
,Hata AN
,Yagi Y
,Yeap BY
,Engelman JA
,Mino-Kenudson M
... -
《-》
Molecular heterogeneity of anti-PD-1/PD-L1 immunotherapy efficacy is correlated with tumor immune microenvironment in East Asian patients with non-small cell lung cancer.
Objective: The aim of this study was to investigate how the tumor immune microenvironment differs regarding tumor genomics, as well as its impact on prognoses and responses to immunotherapy in East Asian patients with non-small cell lung cancer (NSCLC). Methods: We performed an integrated analysis using publicly available data to identify associations between anti-programmed death 1 (PD-1)/ programmed death-ligand 1 (PD-L1) immunotherapy efficacy and classic driver oncogene mutations in East Asian NSCLC patients. Four pooled and clinical cohort analyses were used to correlate driver oncogene mutation status and tumor microenvironment based on PD-L1 and CD8+ tumor-infiltrating lymphocytes (TILs). Immune infiltrating patterns were also established for genomic NSCLC subgroups using the CIBERSORT algorithm. Results: Based on East Asian NSCLC patients, TIDE analyses revealed that for anti-PD-1/PD-L1 immunotherapy, epidermal growth factor receptor (EGFR)-mutant and anaplastic lymphoma kinase (ALK)-rearranged tumors yielded inferior responses; however, although Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant tumors responded better, the difference was not statistically significant (EGFR: P = 0.037; ALK: P < 0.001; KRAS: P = 0.701). Pooled and clinical cohort analyses demonstrated tumor immune microenvironment heterogeneities correlated with oncogenic patterns. The results showed remarkably higher PD-L1- and TIL-positive KRAS-mutant tumors, suggesting KRAS mutations may drive an inflammatory phenotype with adaptive immune resistance. However, the EGFR-mutant or ALK-rearranged groups showed a remarkably higher proportion of PD-L1-/TIL-tumors, suggesting an uninflamed phenotype with immunological ignorance. Notably, similar to triple wild-type NSCLC tumors, EGFR L858R-mutant tumors positively correlated with an inflammatory phenotype, suggesting responsiveness to anti-PD-1/PD-L1 immunotherapy (P < 0.05). Furthermore, the CIBERSORT algorithm results revealed that EGFR-mutant and ALK-rearranged tumors were characterized by an enriched resting memory CD4+ T cell population (P < 0.001), as well as a lack of CD8+ T cells (P < 0.01), and activated memory CD4+ T cells (P = 0.001). Conclusions: Our study highlighted the complex relationships between immune heterogeneity and immunotherapeutic responses in East Asian NSCLC patients regarding oncogenic dependence.
Jin R
,Liu C
,Zheng S
,Wang X
,Feng X
,Li H
,Sun N
,He J
... -
《Cancer Biology & Medicine》
Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study.
Immune checkpoint inhibitors are a new standard of care for patients with advanced non-small-cell lung cancer (NSCLC) without EGFR tyrosine kinase or anaplastic lymphoma kinase (ALK) genetic aberrations (EGFR-/ALK-), but clinical benefit in patients with EGFR mutations or ALK rearrangements (EGFR+/ALK+) has not been shown. We assessed the effect of durvalumab (anti-PD-L1) treatment in three cohorts of patients with NSCLC defined by EGFR/ALK status and tumour expression of PD-L1.
ATLANTIC is a phase 2, open-label, single-arm trial at 139 study centres in Asia, Europe, and North America. Eligible patients had advanced NSCLC with disease progression following at least two previous systemic regimens, including platinum-based chemotherapy (and tyrosine kinase inhibitor therapy if indicated); were aged 18 years or older; had a WHO performance status score of 0 or 1; and measurable disease per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Key exclusion criteria included mixed small-cell lung cancer and NSCLC histology; previous exposure to any anti-PD-1 or anti-PD-L1 antibody; and any previous grade 3 or worse immune-related adverse event while receiving any immunotherapy agent. Patients in cohort 1 had EGFR+/ALK+ NSCLC with at least 25%, or less than 25%, of tumour cells with PD-L1 expression. Patients in cohorts 2 and 3 had EGFR-/ALK- NSCLC; cohort 2 included patients with at least 25%, or less than 25%, of tumour cells with PD-L1 expression, and cohort 3 included patients with at least 90% of tumour cells with PD-L1 expression. Patients received durvalumab (10 mg/kg) every 2 weeks, via intravenous infusion, for up to 12 months. Retreatment was allowed for patients who benefited but then progressed after completing 12 months. The primary endpoint was the proportion of patients with increased tumour expression of PD-L1 (defined as ≥25% of tumour cells in cohorts 1 and 2, and ≥90% of tumour cells in cohort 3) who achieved an objective response, assessed in patients who were evaluable for response per independent central review according to RECIST version 1.1. Safety was assessed in all patients who received at least one dose of durvalumab and for whom any post-dose data were available. The trial is ongoing, but is no longer open to accrual, and is registered with ClinicalTrials.gov, number NCT02087423.
Between Feb 25, 2014, and Dec 28, 2015, 444 patients were enrolled and received durvalumab: 111 in cohort 1, 265 in cohort 2, and 68 in cohort 3. Among patients with at least 25% of tumour cells expressing PD-L1 who were evaluable for objective response per independent central review, an objective response was achieved in 9 (12·2%, 95% CI 5·7-21·8) of 74 patients in cohort 1 and 24 (16·4%, 10·8-23·5) of 146 patients in cohort 2. In cohort 3, 21 (30·9%, 20·2-43·3) of 68 patients achieved an objective response. Grade 3 or 4 treatment-related adverse events occurred in 40 (9%) of 444 patients overall: six (5%) of 111 patients in cohort 1, 22 (8%) of 265 in cohort 2, and 12 (18%) of 68 in cohort 3. The most common treatment-related grade 3 or 4 adverse events were pneumonitis (four patients [1%]), elevated gamma-glutamyltransferase (four [1%]), diarrhoea (three [1%]), infusion-related reaction (three [1%]), elevated aspartate aminotransferase (two [<1%]), elevated transaminases (two [<1%]), vomiting (two [<1%]), and fatigue (two [<1%]). Treatment-related serious adverse events occurred in 27 (6%) of 444 patients overall: five (5%) of 111 patients in cohort 1, 14 (5%) of 265 in cohort 2, and eight (12%) of 68 in cohort 3. The most common serious adverse events overall were pneumonitis (five patients [1%]), fatigue (three [1%]), and infusion-related reaction (three [1%]). Immune-mediated events were manageable with standard treatment guidelines.
In patients with advanced and heavily pretreated NSCLC, the clinical activity and safety profile of durvalumab was consistent with that of other anti-PD-1 and anti-PD-L1 agents. Responses were recorded in all cohorts; the proportion of patients with EGFR-/ALK- NSCLC (cohorts 2 and 3) achieving a response was higher than the proportion with EGFR+/ALK+ NSCLC (cohort 1) achieving a response. The clinical activity of durvalumab in patients with EGFR+ NSCLC with ≥25% of tumour cells expressing PD-L1 was encouraging, and further investigation of durvalumab in patients with EGFR+/ALK+ NSCLC is warranted.
AstraZeneca.
Garassino MC
,Cho BC
,Kim JH
,Mazières J
,Vansteenkiste J
,Lena H
,Corral Jaime J
,Gray JE
,Powderly J
,Chouaid C
,Bidoli P
,Wheatley-Price P
,Park K
,Soo RA
,Huang Y
,Wadsworth C
,Dennis PA
,Rizvi NA
,ATLANTIC Investigators
... -
《-》
Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment.
The efficacy of programmed death-1 blockade in epidermal growth factor receptor gene (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) patients with different mechanisms of acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) is unknown. We retrospectively evaluated nivolumab efficacy and immune-related factors in such patients according to their status for the T790M resistance mutation of EGFR.
We identified 25 patients with EGFR mutation-positive NSCLC who were treated with nivolumab after disease progression during EGFR-TKI treatment (cohort A). Programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocyte (TIL) density in tumor specimens obtained after acquisition of EGFR-TKI resistance were determined by immunohistochemistry. Whole-exome sequencing of tumor DNA was carried out to identify gene alterations. The relation of T790M status to PD-L1 expression or TIL density was also examined in an independent cohort of 60 patients (cohort B).
In cohort A, median progression-free survival (PFS) was 2.1 and 1.3 months for T790M-negative and T790M-positive patients, respectively (P = 0.099; hazard ratio of 0.48 with a 95% confidence interval of 0.20-1.24). Median PFS was 2.1 and 1.3 months for patients with a PD-L1 expression level of ≥1% or <1%, respectively (P = 0.084; hazard ratio of 0.37, 95% confidence interval of 0.10-1.21). PFS tended to increase as the PD-L1 expression level increased with cutoff values of ≥10% and ≥50%. The proportion of tumors with a PD-L1 level of ≥10% or ≥50% was higher among T790M-negative patients than among T790M-positive patients of both cohorts A and B. Nivolumab responders had a significantly higher CD8+ TIL density and nonsynonymous mutation burden.
T790M-negative patients with EGFR mutation-positive NSCLC are more likely to benefit from nivolumab after EGFR-TKI treatment, possibly as a result of a higher PD-L1 expression level, than are T790M-positive patients.
Haratani K
,Hayashi H
,Tanaka T
,Kaneda H
,Togashi Y
,Sakai K
,Hayashi K
,Tomida S
,Chiba Y
,Yonesaka K
,Nonagase Y
,Takahama T
,Tanizaki J
,Tanaka K
,Yoshida T
,Tanimura K
,Takeda M
,Yoshioka H
,Ishida T
,Mitsudomi T
,Nishio K
,Nakagawa K
... -
《-》
Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer.
EGFR-mutated or ALK-rearranged non-small cell lung cancer (NSCLC) often showed unfavorable clinical benefit to checkpoint inhibitors (CPIs). However, few reports exist with integrated analysis, to interpret the underlying mechanism of poor response to PD-1/PD-L1 inhibitors. We have retrospectively analyzed the tumor microenvironment (TME) based on tumor PD-L1 expression and CD8+ T cells infiltration in patients with EGFR mutations and ALK rearrangements, and the prognostic value of TME subtypes on overall survival (OS).
Tumor samples from 715 patients with lung cancer were retrospectively collected at Guangdong Lung Cancer Institute. Tumoral PD-L1 expression (N = 715) and CD8+ T cells infiltration (N = 658) was determined by immunohistochemistry (IHC), based on which TME was categorized into four different subtypes: PD-L1+/CD8+, PD-L1-/CD8+, PD-L1+/CD8-, PD-L1-/CD8-. Proportion of four TME subtypes was determined, and overall survival with PD-L1 expression and TME was analyzed.
In patients with EGFR mutations or ALK rearrangements, proportion of PD-L1+/CD8+ tumors was the lowest (5.0%, 17/342), and that of PD-L1-/CD8- tumors was the highest (63.5%, 217/342). In patients with wild-type EGFR and ALK, 14.2% (45/316) tumors were PD-L1+/CD8+ and 50.3% (159/316) tumors were PD-L1-/CD8- (P < 0.001). Median OS of EGFR-mutated or ALK-rearranged lung cancer was 78.6 months in PD-L1 positive group and 93.4 months in PD-L1 negative group (HR 0.47, 95%CI 0.23-0.76, P = 0.005). PD-L1+/CD8+ group exhibited the shortest OS, with 44.3 months, but is likely to respond to CPIs. The PD-L1-/CD8+ group exhibited the longest OS but is unlikely to respond to CPIs.
Patients with EGFR mutations or ALK rearrangements exhibited lower PD-L1 and CD8 co-expression level in TME, which could be responsible for poor response to CPIs. PD-L1 and CD8 co-expression in EGFR-mutated or ALK-rearranged lung cancer is a biomarker for poor prognosis with shorter OS.
Liu SY
,Dong ZY
,Wu SP
,Xie Z
,Yan LX
,Li YF
,Yan HH
,Su J
,Yang JJ
,Zhou Q
,Zhong WZ
,Tu HY
,Yang XN
,Zhang XC
,Wu YL
... -
《-》