Oncological miR-182-3p, a Novel Smooth Muscle Cell Phenotype Modulator, Evidences From Model Rats and Patients.
摘要:
Vascular smooth muscle cell (VSMC) phenotype change is a hallmark of vascular remodeling, which contributes to atherosclerotic diseases and can be regulated via microRNA-dependent mechanisms. We recently identified that asymmetrical dimethylarginine positively correlates to vascular remodeling-based diseases. We hypothesized that asymmetrical dimethylarginine induces smooth muscle cell (SMC) phenotypic change via a microRNA-dependent mechanism. Microarray analysis enabled the identification of downregulation of miR-182-3p in asymmetrical dimethylarginine-treated human aortic artery SMCs. The myeloid-associated differentiation marker (MYADM) was identified as the downstream target of miR-182-3p and implicated to contribute to miR-182-3p knockdown-mediated SMC phenotype change, which was evidenced by the increased proliferation and migration and reduced expression levels of phenotype-related genes in human aortic artery SMCs through the ERK/MAP (extracellular signal-regulated kinase/mitogen-activated protein) kinase-dependent mechanism. When inhibiting MYADM in the presence of miR-182-3p inhibitor or overexpressing MYADM in the presence of pre-miR-182-3p, human aortic artery SMCs were reversed to the differentiation phenotype. In vivo, adeno-miR-182-3p markedly suppressed carotid neointimal formation by using balloon-injured rat carotid artery model, specifically via decreased MYADM expression, whereas adeno-miR-182-3p inhibitor significantly promoted neointimal formation. Atherosclerotic lesions from patients with high asymmetrical dimethylarginine plasma levels exhibited decreased miR-182-3p expression levels and elevated MYADM expression levels. miR-182-3p is a novel SMC phenotypic modulator by targeting MYADM.
收起
展开
DOI:
10.1161/ATVBAHA.115.307412
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(928)
参考文献(0)
引证文献(16)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无