Cytomegalovirus-Infected Primary Endothelial Cells Trigger NKG2C+ Natural Killer Cells.

来自 PUBMED

作者:

Djaoud ZRiou RGavlovsky PJMehlal SBressollette CGérard NGagne KCharreau BRetière C

展开

摘要:

Among innate cells, natural killer (NK) cells play a crucial role in the defense against cytomegalovirus (CMV). In some individuals, CMV infection induces the expansion of NKG2C+ NK cells that persist after control of the infection. We have previously shown that KIR2DL+ NK cells, in contrast to NKG2C+ NK cells, contribute to controlling CMV infection using a CMV-infected monocyte-derived dendritic cell (MDDC) model. However, the nature of CMV-infected cells contributing to the expansion of the NKG2C+ NK cell subset remains unclear. To gain more insight into this question, we investigated the contribution of NKG2C+ NK cell activation by CMV-infected primary human aortic endothelial cells (EC) isolated from kidney transplant donors, which constitutively express the human leukocyte antigen (HLA)-E molecule. Here, we show that, although classic HLA class I expression was drastically downregulated, nonclassic HLA-E expression was maintained in CMV-infected EC. By comparing HLA expression patterns in CMV-infected EC, fibroblasts and MDDC, we demonstrate a cell-dependent modulation of HLA-E expression by CMV infection. NKG2C+ NK cell degranulation was significantly triggered by CMV-infected EC regardless of the nature of the HLA-E allele product. EC, predominantly present in vessels, may constitute a privileged site for CMV infection that drives a 'memory' NKG2C+ NK cell subset.

收起

展开

DOI:

10.1159/000445320

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(265)

参考文献(40)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读