The physiology and genetics of CO2 concentrating mechanisms in model diatoms.
摘要:
Diatoms, a diverse and ecologically-important group of unicellular algae, use a CO2 concentrating mechanism to enhance the performance of RubisCO and overcome the limited availability of CO2 in their habitats. The recent development of genetic manipulation techniques for the model diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana and the sequencing of their genomes have enabled the rapid identification of genes involved in their CO2 concentrating mechanisms (CCMs). These include numerous carbonic anhydrases (CAs), which are localized to distinct subcellular compartments in the two diatom species, and putative bicarbonate transporters, one of which has been functionally characterized. New physiological data on the P. tricornutum CCM are consistent with this molecular data and suggest that the major driver of the CCM is a 'chloroplast-pump' that actively transports bicarbonate into the chloroplast. In T. pseudonana, the localization of a CA in the chloroplast stroma presents a paradox as this would be expected to impede function of a biophysical CCM, though the recent proposal of a modified C4 CCM offers a potential explanation.
收起
展开
DOI:
10.1016/j.pbi.2016.03.013
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(198)
参考文献(0)
引证文献(27)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无