In vitro effects of metals on isolated head-kidney and blood leucocytes of the teleost fish Sparus aurata L. and Dicentrarchus labrax L.
摘要:
The in vitro use of fish leucocytes to test the toxicity of aquatic pollutants, and particularly the immutoxicological effects, could be a valuable alternative to fish bioassays but has received little attention. In this study, head-kidney and peripheral blood leucocytes (HKLs and PBLs, respectively) from gilthead seabream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) specimens were exposed to Cd, MeHg (methylmercury), Pb or As for 24 h being evaluated the resulting cytotoxicity. Exposure to metals produced a dose-dependent reduction in the viability, and MeHg showed the highest toxicity followed by Cd, As and Pb. Interestingly, leucocytes from European sea bass are more resistant to metal exposure than those from gilthead seabream. Similarly, HKLs are always more sensitive than those isolated from blood from the same fish species. Moreover, fish leucocytes incubated with metals exhibited alterations in gene expression profiles that were more pronounced in the HKLs in general, being Pb the metal provoking less effects. Concretely, genes related to cellular protection (metallothionein), stress (heat shock protein 70) and oxidative stress (superoxide dismutase, catalase and glutathione reductase) were, in general, down-regulated in seabream HKLs but up-regulated in seabream PBLs and sea bass HKLs and PBLs. In addition, this profile leads to the increase of expression in genes related to apoptosis (Bcl2 associated X protein and caspase 3). Finally, transcription of genes involved in immunity (interleukin-1β and immunoglobulin M) was down-regulated, mainly in seabream leucocytes. This study points to the benefits for evaluating the toxicological mechanisms of marine pollution using fish leucocytes in vitro and insight into the mechanisms at gene level.
收起
展开
DOI:
10.1016/j.fsi.2016.03.164
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(511)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无