-
The Tumor Suppressive Role of MiRNA-509-5p by Targeting FOXM1 in Non-Small Cell Lung Cancer.
Deregulation of microRNAs (miRNAs) expression is a frequent event in cancer development and progression. Recent studies have implied that abnormal expression of miRNAs is frequently observed in non-small cell lung cancer (NSCLC). Here, we examined the levels and biological functions of miR-509-5p in NSCLC.
The levels of miR-509-5p were measured by real-time quantitative PCR (RT-PCR) in NSCLC cell lines and NSCLC tissues along with adjacent normal tissues. Cell viability was analyzed by MTT and colony formation assay. Cell migration and invasion were evaluated by transwell and wound healing assay. In addition, we predicted the putative targets of miR-509-5p by bioinformatics analyses. Moreover, by luciferase-reporter assay, we analyzed the relationship between miR-509-5p and the target in NSCLC cells.
miR-509-5p expression was significantly reduced in NSCLC tissues compared with adjacent normal tissues. In addition, miR-509-5p decreased cell proliferation, migration and invasive capability of NSCLC cells. Moreover, we found that FOXM1 was a putative target of miR-509-5p. Enforced miR-509-5p expression in NSCLC cells reduced both mRNA and protein levels of FOXM1. Furthermore, dual-luciferase reporter assay showed miR-509-5p could bind to the 3' untranslational regions of FOXM1 mRNA. Furthermore, overexpression of FOXM1 reversed cell viability, migration, invasion and vimentin levels suppressed by miR-509-5p mimics in H1299 cells.
miR-509-5p exerts tumor-suppressive effects by attenuating FOXM1 in NSCLC. Collectively, these findings provide further evidence that miR-509-5p may be considered as a novel and potential target for the diagnosis, prognosis and treatment of NSCLC.
Ma N
,Zhang W
,Qiao C
,Luo H
,Zhang X
,Liu D
,Zang S
,Zhang L
,Bai J
... -
《-》
-
The Effect of LncRNA H19/miR-194-5p Axis on the Epithelial-Mesenchymal Transition of Colorectal Adenocarcinoma.
Since the combined actions of lncRNAs and miRNAs have been considered to be involved in the occurrence and development of various neoplasms, the main purpose of this study was to discover whether and how lncRNA H19 and miR-194 influenced the epithelial-mesenchymal transition (EMT) process of colorectal adenocarcinoma (CRA).
Totally 214 pairs of CRA and adjacent normal tissues were collected, and 5 human CRA cell lines (i.e. HCT116, HT-29, RKO SW280 and Lovo) were purchased. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was adopted to quantify the H19 and miR-194-5p expressions in cells and tissues. The expressions of FoxM1, E-cadherin, vimentin, N-cadherin were determined using western blot. On the side, si-H19, si-NC, miR-194-5p mimic, miR-194-5p inhibitor and negative control (NC) were transfected into CRA cell lines. Meanwhile, the invasive, migratory and proliferative conditions of the cells were assessed through transwell, wound healing and colony-forming experiments, with final verification of the relationship between H19 and miR-194-5p employing dual-luciferase reporter gene assay.
Highly-expressed H19, lowly-expressed miR-194-5p, low-grade differentiation and lymph node metastasis appeared as the independent predictors of unfavorable prognosis in CRA patients' (all P< 0.05). It indicated that FoxM1 expression displayed positive correlations with H19 expression, yet negative associations with miR-194-5p expression within CRA tissues (P< 0.05). In addition, transfection of H19-siRNA and miR-145-5p mimic triggered a conspicuous increase in E-cadherin expression, as well as an evidently down-regulation in vimentin and N-cadherin expressions within HT29 and RKO cells (P< 0.05). On the other hand, the invasive and migratory capacities of CRA cells were significantly hindered (P< 0.05). Moreover, the luciferase reporter gene assay confirmed that H19 modified miR-194-5p expression through directly targeting at it (P< 0.05). Ultimately, FoxM1 could reverse the role of miR-194-5p in inhibiting invasion, migration and EMT of CRA cells (P< 0.05).
LncRNA H19/miR-194/FoxM1 axis could serve as a profound target for the diagnosis and treatment of CRA.
Li CF
,Li YC
,Wang Y
,Sun LB
... -
《-》
-
Soy isoflavone genistein inhibits hsa_circ_0031250/miR-873-5p/FOXM1 axis to suppress non-small-cell lung cancer progression.
The foods of plants provide the rich nutrition and have protective function in human diseases, including cancers. Genistein is a major isoflavone constituent in soybeans, which has an anti-cancer role in non-small-cell lung cancer (NSCLC). Nevertheless, the mechanism underlying the anti-cancer function of genistein in NSCLC remains largely unknown. NSCLC cells (H292 and A549) were exposed to genistein. Circular RNA hsa_circ_0031250 (circ_0031250), microRNA (miR)-873-5p and forkhead box M1 (FOXM1) abundances were examined via quantitative reverse transcription polymerase chain reaction and Western blotting. The function of genistein, circ_0031250, miR-873-5p, and FOXM1 on NSCLC progression was investigated via Cell Counting Kit-8, colony formation, transwell well, wound healing, flow cytometry, Western blotting and xenograft model. The target relationship was analyzed by dual-luciferase reporter analysis and RNA immunoprecipitation. Results showed that genistein inhibited NSCLC cell viability in dose-time-dependent patterns. circ_0031250 abundance was elevated in NSCLC samples and cell lines, and it was reduced via genistein exposure. circ_0031250 knockdown aggravated genistein-caused suppression of cell proliferation, migration and invasion and elevation of apoptosis. miR-873-5p expression was decreased in NSCLC samples and cells. miR-873-5p was targeted via circ_0031250, and miR-873-5p knockdown attenuated the influence of circ_0031250 silence on NSCLC progression in the presence of genistein. FOXM1 was regulated via circ_0031250/miR-873-5p axis. miR-873-5p constrained cell proliferation, migration and invasion and increased apoptosis via regulating FOXM1 in genistein-treated cells. circ_0031250 knockdown enhanced the inhibitive function of genistein on NSCLC cell growth in xenograft model. Collectively, genistein repressed NSCLC progression by modulating circ_0031250/miR-873-5p/FOXM1 axis.
Yu Y
,Xing Y
,Zhang Q
,Zhang Q
,Huang S
,Li X
,Gao C
... -
《-》
-
Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion.
GCNT3 is a member of N-acetylglucosaminyltransferase family involved with mucin biosynthesis. GCNT3 aberrant expression is known to promote the progression of several human cancers. However, its role in tumorigenesis and the progression of non-small cell lung cancer (NSCLC) has not been well-characterized. Our study investigated the functional mechanisms of GCNT3 regulated by microRNAs (miRNAs) in NSCLC.
The differential expression of mRNAs in NSCLC tissues and matched adjacent non-cancerous lung tissues from patients in Xuanwei, Yunnan province, China, was screened via mRNA microarray. The expression of GCNT3 and its correlation with NSCLC progression was measured in 92 paired tumor tissues and adjacent normal tissues. The functions of GCNT3 in NSCLC cells and its underlying mechanisms were measured using siRNA and GCNT3-expression vectors. The miRNA immunoprecipitation (miRIP) method was used to identify the miRNAs targeting GCNT3. The protein were measured using western blot assay, and the mRNAs were measured by quantitative real-time PCR (qRT-PCR) assay. Cell proliferation was measured using Cell Counting Kit-8 (CCK-8) and a colony forming assays; cell migration and invasion assays were performed using 24-well Transwell chambers with 8-μm pores filter, and analyses of the cell cycle and apoptosis were performed via flow cytometric analysis. The dual luciferase reporter assay was performed to confirm whether GCNT3 gene was a direct target of miR-302b-3p.
GCNT3 was found to be highly expressed in both NSCLC tissues and cell lines, and higher expression correlated significantly with advanced tumor-node-metastasis (TNM) stage, positive lymph node metastasis, and poor overall survival. Knockdown of GCNT3 inhibited the proliferation, migration and invasion ability of NSCLC cells, while overexpression facilitated these activities. Further mechanistic experiments using miRIP and dual luciferase reporter assays revealed that GCNT3 was a direct target of miR-302b-3p. Low expression of miR-302b-3p was found in NSCLC cells and negatively correlated with GCNT3 levels, while miR-302b-3p overexpression inhibited the proliferation, migration and invasion of NSCLC cells. Co-transfection with miR-302b-3p and the expression vector of GCNT3 abrogated the effects of mir-302b-3p, confirming that miR-302b-3p inhibited NSCLC progression by targeting GCNT3. Western blotting revealed that E-cadherin, N-cadherin, vimentin, p-Erk and cyclin D1 were downstream molecules of miR-302b-3p/GCNT3 pathway.
miR-302b-3p/GCNT3 axis regulated cell proliferation, migration, and invasion by activating the Erk signaling pathway and epithelial-mesenchymal transition (EMT), which was identified as a potential therapeutic target for NSCLC.
Li Q
,Ran P
,Zhang X
,Guo X
,Yuan Y
,Dong T
,Zhu B
,Zheng S
,Xiao C
... -
《-》
-
MiR-142-5p Suppresses Tumorigenesis by Targeting PIK3CA in Non-Small Cell Lung Cancer.
Numerous studies have demonstrated that aberrant microRNA (miRNA) expression is involved in human disease including cancer. To date, the potential miRNAs regulating lung cancer growth and progression are not fully identified yet.
In this study, the expression of miR-142-5p was measured in non-small cell lung cancer tissue and cell lines by qRT-PCR. The functional assays including the cell viability, colony formation, cell migration and invasion were performed in miR-142-5p mimic or inhibitor transfected cell lines (in vitro) and the cell tumorigenesis in nude mice (in vivo). The fluorescence ratios of cell viability were recorded using a multi-plate reader (Synergy 2, BioTek, Winooski, VT, USA) and the colonies were counted using an ELIspot Bioreader 5000 (BIO-SYS, Karben, GE).
MiR-142-5p was significantly downregulated in non-small cell lung cancer tissue and cell lines compared to normal human lung tissues. Overexpression of miR-142-5p resulted in decreased expression of PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) at both mRNA and protein levels. We found that miR-142-5p overexpression markedly suppressed cell proliferation in vitro and in vivo. Conversely, inhibition of miR-142-5p promoted lung cancer growth. Mechanistic studies showed that PIK3CA was a potential target of miR-142-5p and it mediated reduction of PIK3CA resulting in suppression of PI3K/Akt pathway.
Our results demonstrate that miR-142-5p functions as a growth suppressive miRNA and plays an important role in inhibiting the tumorigenesis through targeting PIK3CA in non-small cell lung cancer.
Wang Z
,Liu Z
,Fang X
,Yang H
... -
《-》