-
Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review.
Belamcanda chinensis (L.) DC is the sole species in the genus Belamcanda Adans. (Iridaceae), found mainly in Northeast Asia. Bombus chinensis has long been used in traditional Chinese medicine for its multiple therapeutic uses in the form of antipyretic agents, antidote, expectorant, antiphlogistic and analgesic.
This manuscript comprehensively summarizes the various studies published in recent years on the botany, ethnopharmacology, phytochemistry, biological activity and toxicology of B. chinensis. We hope to provide a foundation for future studies on the mechanism of action and development of better therapeutic agents based on B. chinensis.
All information available on B. chinensis was collected using electronic search engines, such as PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar and Web of Science.
The analysis shown that ethno-medical uses of B. chinensis have been recorded in China, Japan and Korea since a long time. Based on a phytochemical investigation, this plant contains flavonoids, terpenoids, quinones, phenolic compounds, ketones, organic acids, etc. Crude extracts and pure compounds isolated from B. chinensis exhibited various biological effects.
In light of its long traditional use and the modern phytochemical and pharmacological studies summarized here, B. chinensis is known to be a promising medicinal plant with the isolated extracts and chemical components showing a wide range of biological activities. Thus, it is imperative that the necessary programs and value assessment of B. chinensis be established for further studies. It is also important that the synergistic or antagonistic effects of this traditional herbal medicine are investigated in depth to identify more bioactive components by bioactivity-guided isolation strategies, and to illustrate the mechanisms of action targeting on ethnomedical uses. Future clinical studies can also focus on the main therapeutic aspects, toxicity and adverse effects of B. chinensis.
Zhang L
,Wei K
,Xu J
,Yang D
,Zhang C
,Wang Z
,Li M
... -
《-》
-
Platycodon grandiflorus - an ethnopharmacological, phytochemical and pharmacological review.
Platycodon grandiflorus (Jacq.) A. DC., the sole species in genus Platycodon A. DC. (Campanulaceae) has a long history of use as a traditional herbal medicine for the treatments of cough, phlegm, sore throat, lung abscess, chest pain, dysuria, and dysentery. As a legal medicine and dietary supplement, it is also frequently used as an ingredient in health foods and vegetable dishes. The aim of this review is to provide up-to-date information on the botanical characterization and distribution, ethnopharmacology, phytochemistry, pharmacology, and toxicity of Platycodon grandiflorus based on literature published in recent years. It will build a foundation for further study of the mechanism of action and the development of better therapeutic agents and healthy products from Platycodon grandiflorus.
All of the available information on Platycodon grandiflorus was collected via electronic search (using PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar, Baidu Scholar, and Web of Science).
A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethno-medical uses of Platycodon grandiflorus have been recorded in China, Japan, Mongolia, and Korea for thousands of years. A phytochemical investigation revealed that this product contains steroidal saponins, flavonoids, polyacetylenes, sterols, phenolics, and other bioactive compounds. Crude extracts and pure compounds isolated from Platycodon grandiflorus exhibited significant anti-inflammatory and immunostimulatory effects. They also showed valuable bioactive effects, such as anti-tumor, anti-oxidant, anti-diabetic, anti-obesity, hepatoprotective and cardiovascular system effects, among others.
In light of its long traditional use and the modern phytochemical and pharmacological studies summarized here, Platycodon grandiflorus has been demonstrated to show a strong potential for therapeutic and health-maintaining uses. Both the extracts and chemical components isolated from the plant showed a wide range of biological activities. Thus, more studies on the pharmacological mechanisms of its main active compounds (e.g., platycodin D, D2) need to be conducted. In addition, as one of the most popular traditional herbal medicines, clinical studies of the main therapeutic aspects, toxicity and adverse effects of Platycodon grandiflorus will also undoubtedly be the focus of future investigation.
Zhang L
,Wang Y
,Yang D
,Zhang C
,Zhang N
,Li M
,Liu Y
... -
《-》
-
The genus Anemarrhena Bunge: A review on ethnopharmacology, phytochemistry and pharmacology.
Anemarrhena asphodeloides Bunge. (Asparagaceae) yields Anemarrhenae Rhizoma, which has a long history to be used as a traditional medicine to treat various ailments, like cold-induced febrile disease with arthralgia, hematochezia, tidal fever and night sweats by Yin deficiency, bone-steaming, cough, and hemoptysis. It is also used as an ingredient of healthy food, wine, tea, biological toothpaste. Its importance is demonstrated by large scale to treat kinds of diseases in eastern Asian countries. The aim of this review is to provide up-to-date information about phytochemistry, pharmacology, and toxicology of Anemarrhena asphodeloides based on scientific literatures. It will build up a new foundation for further study on mechanism and development of better therapeutic agent and healthy product from Anemarrhena asphodeloides.
All the available information on Anemarrhena asphodeloides was collected via electronic search (using PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar, Baidu Scholar, and Web of Science).
Comprehensive analysis of the literatures searched through sources available above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had been recorded in China, Japan, and Korea for thousands of years. The phytochemical investigation revealed the presence of steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, anthraquinones, and others. Crude extracts and pure compounds from Anemarrhena asphodeloides exhibited significant pharmacological effects on the nervous system and the blood system. They also showed valuable bioactivities, such as antitumor, anti-oxidation, anti-microbial, anti-virus, anti-inflammation, anti-osteoporosis, anti-skin aging and damage as well as other activities.
In light of long traditional use and modern phytochemical and pharmacological studies summarized, Anemarrhena asphodeloides has demonstrated a strong potential for therapeutic and health-maintaining purposes. Both the extracts and chemical components isolated from the plant showed a wide range of biological activities. Thus more pharmacological mechanisms on main active compounds (TBII, TAIII, mangiferin and other ingredients) are necessary to be explored. In addition, as a good source of the traditional medicine, clinical studies of main therapeutic aspects (e.g. diabetes, Alzheimer׳s disease, Parkinson׳s disease, etc.), toxicity and adverse effect of Anemarrhena asphodeloides will also undoubtedly be the focus of future investigation.
Wang Y
,Dan Y
,Yang D
,Hu Y
,Zhang L
,Zhang C
,Zhu H
,Cui Z
,Li M
,Liu Y
... -
《-》
-
Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: A review.
Plants of the genus Cimicifuga have long been used as an ethnomedicine in China, Europe, and North America for its high medicinal value and health benefits. Their dried rhizomes are widely used for treating wind-heat headache, toothache, aphtha, sore throat, measles, spot poison, archoptosis, and uterine prolapse. In addition, it is used as a dietary supplement for preventing women menopausal symptoms and osteoporosis.
This paper aims to provide up-to-date information on the genus Cimicifuga, including botanical characterization, medicinal resources, traditional medicinal uses, phytochemistry, quality control, pharmacological research as well as the toxicology. The possible structural-activity relationships and molecular mechanisms of the bioactive constituents are discussed in ways that contribute to the structural optimization and preclinical safety assessment for further drug design.
The relevant information on Cimicifuga was collected from scientific databases (such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, CNKI, Baidu Scholar, Web of Science, China Knowledge Resource Integrated Database), Chinese herbal classics, ethnobotanical books, PhD and MSc dissertations, Chinese Pharmacopoeia, published articles in peer-reviewed journals, local magazines, and unpublished materials. In addition, the Plant List (TPL, www.theplantlist.org) was also used to validate the scientific names and synonyms of this plant. The literature cited in this review dated from 1953 to 2017.
The majority of chemical constituents of this plant include triterpenoid glycosides, phenylpropanoids, nitrogenous compounds, chromones, flavonoids and 4α-methyl steroid. Among them, the primary bioactive constituents are believed to be present in the triterpene glycoside fraction. To date, investigation of seven Cimicifuga spp. plants led to the identification of more than 457 compounds. Years of pharmacological research proved that the crude extracts and certain pure compounds obtained from Cimicifuga exhibited menopausal syndrome-treatment, anti-osteoporosis, antiviral, antitumor, antioxidant and antiangiogenic activities. On the other hand, Cimicifuga plant-induced toxicities of liver, cardiovascular, central and peripheral nervous systems have also been reported. Therefore, safety consideration should be placed into a high priority for herbal medicine Cimicifuga therapy in the early stages of development and clinical trials.
This review presents information on botany, medicinal resources, and traditional medicinal history of some Cimicifuga plants. Modern pharmacology researchers have validated many traditional uses of Cimicifuga species. As the quality control and safety assessment of Cimicifuga plants is still incomplete, only a small part of the plant is permitted to be used as medicines. Expansion of medicinal resources in Cimicifuga is urgently needed to enable its full use. Currently research primarily focuses on the triterpenoid glycosides but there are many other types of compounds which may possess new biological activities however the systematic studies of these compounds are lacking. Extensive study is required on Cimicifuga plant before it can be fully used in clinics as a potent drug candidate.
Guo Y
,Yin T
,Wang X
,Zhang F
,Pan G
,Lv H
,Wang X
,Owoicho Orgah J
,Zhu Y
,Wu H
... -
《-》
-
Morinda officinalis How. - A comprehensive review of traditional uses, phytochemistry and pharmacology.
The medicinal plant Morinda officinalisHow. (MO) and its root have long been used in traditional medicines in China and northeast Asia as tonics for nourishing the kidney, strengthening the bone and enhancing immunofunction in the treatment of impotence, osteoporosis, depression and inflammatory diseases such as rheumatoid arthritis and dermatitis.
This review aims to sum up updated and comprehensive information about traditional usage, phytochemistry, pharmacology and toxicology of MO and provide insights into potential opportunities for future research and development of this plant.
A bibliographic investigation was performed by analyzing the information available on MO in the internationally accepted scientific databases including Pubmed, Scopus and Web of Science, SciFinder, Google Scholar, Yahoo, Ph.D. and M.Sc. dissertations in Chinese. Information was also obtained from some local and foreign books on ethnobotany and ethnomedicines.
The literature supported the ethnomedicinal uses of MO as recorded in China for various purposes. The ethnomedical uses of MO have been recorded in many regions of China. More than 100 chemical compounds have been isolated from this plant, and the major constituents have been found to be polysaccharides, oligosaccharides, anthraquinones and iridoid glycosides. Crude extracts and pure compounds of this plant are used as effective agents in the treatment of depression, osteoporosis, fatigue, rheumatoid arthritis, and infertility due to their anti-depressant, anti-osteoporosis, pro-fertility, anti-radiation, anti-Alzheimer disease, anti-rheumatoid, anti-fatigue, anti-aging, cardiovascularprotective, anti-oxidation, immune-regulatory, and anti-inflammatory activities. Pharmacokinetic studies have demonstrated that the main components of MO including monotropein and deacetyl asperulosidic acid are distributed in various organs and tissues. The investigation on acute toxicity and genotoxicity indicated that MO is nontoxic. There have no reports on significant adverse effect at a normal dose in clinical application, but MO at dose of more than 1000mg/kg may cause irritability, insomnia and unpleasant sensations in individual cases.
MO has emerged as a good source of traditional medicines. Some uses of this plant in traditional medicines have been validated by pharmacological investigations. However, the molecular mechanism, structure-activity relationship, and potential synergistic and antagonistic effects of its multi-components such as polysaccharides, oligosaccharides, anthraquinones and iridoid glycosides need to be further elucidated, and the structural feature of polysaccharides also need to be further clarified. Sophisticated analytical technologies should be developed to comprehensively evaluate the quality of MO based on HPLC-fingerprint and content determination of the active constituents, knowing that these investigations will help further utilize this plant.
Zhang JH
,Xin HL
,Xu YM
,Shen Y
,He YQ
,Hsien-Yeh
,Lin B
,Song HT
,Juan-Liu
,Yang HY
,Qin LP
,Zhang QY
,Du J
... -
《-》