Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling.
Endothelial cells (ECs) in the tumor microenvironment have been reported to play a more active role in solid tumor growth and metastatic dissemination than simply providing the physical structure to form conduits for blood flow; however, the involvement of ECs in the process of triple-negative breast cancer (TNBC) metastasis has not been addressed. Here, we demonstrate that ECs-when mixed with TNBC cells-could increase TNBC cell metastatic potency. After treatment with TGF-β to induce endothelial-mesenchymal transition (EMT), TNBC cells could produce plasminogen activator inhibitor-1 (PAI-1) and stimulate the expression and secretion of the chemokine, CCL5, from ECs, which then acts in a paracrine fashion on TNBC cells to enhance their migration, invasion, and metastasis. CCL5, in turn, accelerates TNBC cell secretion of PAI-1 and promotes TNBC cell metastasis, thus forming a positive feedback loop. Moreover, this enhanced metastatic ability is reversible and dependent on CCL5 signaling via the chemokine receptor, CCR5. Of importance, key features of this pathway are manifested in patients with TNBC and in The Cancer Genome Atlas database. Taken together, our results suggest that ECs enhance EMT-induced TNBC cell metastasis via PAI-1 and CCL5 signaling and illustrate the potential of developing new PAI-1- and CCL5-targeting therapy for patients with TNBC.-Zhang, W., Xu, J., Fang, H., Tang, L., Chen, W., Sun, Q., Zhang, Q., Yang, F., Sun, Z., Cao, L., Wang, Y., Guan, X. Endothelial cells promote triple-negative breast cancer cell metastasis via PAI-1 and CCL5 signaling.
Zhang W
,Xu J
,Fang H
,Tang L
,Chen W
,Sun Q
,Zhang Q
,Yang F
,Sun Z
,Cao L
,Wang Y
,Guan X
... -
《-》
Obesity-associated metabolic inflammation promotes triple-negative breast cancer progression through the interleukin-6/STAT3/pentraxin 3/matrix metalloproteinase 7 axis.
This study aimed to investigate the regulatory mechanism of the adipose factor interleukin (IL)-6 in promoting pentraxin 3 (PTX3) expression in triple-negative breast cancer (TNBC).
We established an in vitro coculture model of mature adipocytes and TNBC cells using a Transwell system. Cell scratch, Transwell migration, and matrix invasion assays were used to evaluate the migration and invasion abilities of TNBC cells cocultured with adipocytes. Next, we used lentivirus-mediated functional depletion experiments to study PTX3's role in the adipocyte-dependent migration of TNBC cells.
After coculturing TNBC cells with adipocytes, PTX3 expression was upregulated, which accompanied enhanced cell migration and invasion. Using GEO data and RNA-seq analysis, we identified PTX3 as a key target gene influenced by the adipose TNBC microenvironment. IL-6 upregulation in the conditioned medium of mature adipocytes and in the serum of high-fat diet mice was associated with this effect, and the recombinant protein IL-6 significantly promoted the migration and invasion of TNBC cells along with the phosphorylation of intracellular STAT3 and the upregulation of PTX3. PTX3 knockdown inhibited TNBC cell migration and eliminated the enhanced migration caused by coculturing with adipocytes. Furthermore, in vivo experiments confirmed that the PTX3 knockdown reduced obesity-induced lung metastasis. Subsequent experiments with cytokines and drug inhibitors confirmed that adipocyte-derived IL-6 promoted PTX3 expression by activating the STAT3 signaling pathway. Additionally, bioinformatic analysis indicated that PTX3 promotes TNBC metastasis by regulating the matrix metalloproteinase (MMP) family.
Our study elucidated Obesity-related metabolic inflammation promotes the progression via the IL-6/STAT3/PTX3/MMP7 axis.
Xie H
,Ruan G
,Wei L
,Zhang H
,Shi J
,Lin S
,Liu C
,Liu X
,Zheng X
,Chen Y
,Deng L
,Shi H
... -
《-》