Alpha7 nicotinic acetylcholine receptor activation attenuated intestine-derived acute lung injury.

来自 PUBMED

作者:

He YYe ZQLi XZhu GSLiu YYao WFLuo GJ

展开

摘要:

Intestinal ischemia-reperfusion (IIR) could lead to acute lung injury, associated with severe alveolar epithelial cells inflammatory and oxidative injury. Alpha7 nicotinic acetylcholine receptor (α7nAChR) is an essential component of the cholinergic anti-inflammatory pathway. The aim of this study was to investigate the important role of α7nAChR on the lung subjected to IIR. Thirty-two Sprague-Dawley rats were randomly divided into four groups (n = 8 in each): sham group (group S), model group (group M), α7nAChR agonist PNU-282987-treated group (group PNU), and specific α7nAChR antagonist methyllycaconitine-treated group (group MLA). Intestinal IR damage was induced by clamping the superior mesenteric artery for 75 min, followed by a 120-min reperfusion. All rats were killed at 2 h after release of the clamps. The histologic examination of lungs was made, and lung water content was detected. Expression levels of malondialdehyde, tumor necrosis factor alpha, interleukin-6, and superoxide dismutase activity of the lungs were detected. Additionally, expression level of toll-like receptor (TLR)4 and nuclear factor-kappaB (NF-κB p65) in the nucleus of lung tissue and apoptosis-related protein (Bax, Bcl-2, and cleaved-caspase3) were detected using Western blot. Lungs were damaged after intestine IR, manifested by higher lung water content, histologic score, concentrations of interleukin-6, tumor necrosis factor alpha, and malondialdehyde of group M than those of group S, accompanied with decreased superoxide dismutase activity (P < 0.05). PNU treatment could significantly improve the pulmonary function of rats subjected to IIR. These effects of activation of α7nAChR were associated with suppression of TLR4/NF-κB pathway and subsequent reduction of apoptosis-related protein. However, MLA treatment aggravated lung injury. α7nAChR plays a role in acute lung injury induced by IIR via attenuating lung oxidative stress and inflammation through suppression of TLR4/NF-κB pathway, resulting in reduction of apoptosis in the lung.

收起

展开

DOI:

10.1016/j.jss.2015.10.046

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(503)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读