-
Elsholtzia ciliata (Thunb.) Hylander attenuates renal inflammation and interstitial fibrosis via regulation of TGF-ß and Smad3 expression on unilateral ureteral obstruction rat model.
Renal interstitial fibrosis is characterized by excessive accumulation of extracellular matrix, which leads to end-stage renal failure.
The aim of this study was to explore the effect of Elsholtzia ciliata (Thunb.) Hylander ethanol extract (ECE) on renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO).
After quantitative analysis of ECE using the high performance liquid chromatography-photodiode array (HPLC-PDA) method, an in vitro study was performed to assess the anti-inflammatory and anti-fibrotic effects of ECE, using lipopolysaccharide (LPS) and transforming growth factor-ß (TGF-ß), respectively.
For in vivo study, all male Sprague Dawley (SD) rats (n=10/group), except for those in the control group, underwent UUO. The rats were orally treated with water (control), captopril (positive control, 200 mg/kg), and ECE (300 and 500 mg/kg) for 14 days.
In ECE, luteolin and rosmarinic acid were relatively abundant among the other flavonoids and phenolic acids. ECE treatment ameliorated LPS-induced overexpression of nuclear factor-κB, tumor necrosis factor (TNF-α), and interleukin-6 and improved oxidative stress in RAW 264.7 cells. Furthermore, ECE treatment suppressed TGF-ß-induced α-smooth muscle actin and matrix metalloproteinase 9 expression in human renal mesangial cells. In the UUO model, 14 consecutive days of ECE treatment improved UUO-induced renal damage and attenuated histopathological alterations and interstitial fibrosis. Moreover, the renal expression of TNF-α, TGF-ß, and Smad 3 were inhibited by ECE treatment.
Taken together, the effects of ECE may be mediated by blocking the activation of TGF-ß and inflammatory cytokines, leading subsequently to degradation of the ECM accumulation pathway. Based on these findings, ECE might serve as an improved treatment strategy for renal fibrotic disease.
Kim TW
,Kim YJ
,Seo CS
,Kim HT
,Park SR
,Lee MY
,Jung JY
... -
《-》
-
Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction.
Renal fibrosis is the most common pathway leading to end-stage renal disease. It is characterized by excess extracellular matrix (ECM) accumulation and renal tissue damage, subsequently leading to kidney failure. Asperulosidic acid (ASPA), a bioactive iridoid glycoside, exerts anti-tumor, anti-oxidant, and anti-inflammatory activities, but its effects on renal fibrosis induced by unilateral ureteral obstruction (UUO) have not yet been investigated.
This study aimed to investigate the protective effect of ASPA on renal fibrosis induced by UUO, and to explore its pharmacological mechanism.
Thirty-six Sprague-Dawley (SD) rats were randomly divided into six groups: sham group, UUO model group, three ASPA treatment groups (10, 20, and 40 mg/kg), and captopril group (20 mg/kg). Rats were administered vehicle, ASPA or captopril intraperitoneally once a day for 14 consecutive days. Urea nitrogen (BUN), uric acid (UA) and inflammatory factors in serum samples were evaluated on the 7th, 10th, and 14th day after renal fibrosis induction. In addition, the 12 h urine was collected to test the content of urinary protein (upro) on the 14th day. The obstructive renal tissues were collected for pathological analysis (hematoxylin and eosion (H&E) staining and Masson's Trichrome staining) and immunohistochemical analysis on the 14th day after renal fibrosis induction. The mRNA expression of related factors and the protein levels of smad2, smad3, and smad4 were measured in UUO-induced rats by real time PCR and Western blot, respectively.
The levels of BUN, UA, and upro were elevated in UUO-induced rats, but ASPA treatment improved renal function by reducing the levels of BUN, UA, and upro. The protein levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, as well as the mRNA levels of TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1) and interferon-γ (IFN-γ), were decreased after ASPA administration (10, 20 and 40 mg/kg) in a dose-dependent manner. The ASPA exerted an alleviation effect on the inflammatory response through inhibition of nuclear factor-kappa B (NF-κB) pathway. In addition, reductions in α-smooth muscle actin (α-SMA), collagen III, and fibronectin expression were observed after ASPA administration at doses of 20 and 40 mg/kg. Furthermore, the renal expression of transforming growth factor-β1 (TGF-β1), smad2, smad3, and smad4 was down-regulated by ASPA treatment at doses of 20 and 40 mg/kg.
ASPA possessed protective effects on renal interstitial fibrosis in UUO-induced rats. These effects may be through inhibition of the activation of NF-κB and TGF-β1/smad2/smad3 signaling pathways.
Xianyuan L
,Wei Z
,Yaqian D
,Dan Z
,Xueli T
,Zhanglu D
,Guanyi L
,Lan T
,Menghua L
... -
《-》
-
Berberine ameliorates renal interstitial fibrosis induced by unilateral ureteral obstruction in rats.
To investigate the potential effects of berberine on renal interstitial fibrosis (RIF) of obstructed kidneys in a unilateral ureteral obstruction (UUO) rat model.
Forty-eight rats were randomly divided into three groups: sham-operated, vehicle-treated UUO, and berberine-treated UUO. Rats were gavaged with berberine (200 mg/kg per day) or vehicle. Eight randomly chosen rats in each group were kiled and specimens were collected at day 14 after UUO. Physiological parameters and histological changes were assessed, RIF was evaluated using Masson's trichrome and Sirius red staining, oxidative stress and inflammation markers were determined, transforming growth factor β1 (TGF-β1), phosphorylated Smad3 (pSmad3) and α-smooth muscle actin (α-SMA) were measured using immunohistochemistry or western blotting analysis. The obstruction was relieved at day 14 by percutaneous nephrostomy in the remaining UUO rats. The resistive index of left kidneys was undertaken by coloured Doppler flow imaging at day 14 before nephrostomy and day 7 after the relief.
Berberine treatment significantly attenuated RIF induced by UUO. The UUO-induced reduction in kidney superoxide dismutase and catalase activities increased, whereas elevated kidney malondialdehyde level markedly decreased. Berberine treatment significantly ameliorated UUO-induced inflammation, and decreased TGF-β1, pSmad3 and α-SMA expression of UUO kidneys. Moreover, berberine treatment significantly suppressed the increase of resistive index compared with UUO group at day 14 after UUO as well as day 7 after the relief of obstruction.
Berberine treatment ameliorates RIF in a UUO rat model by inhibition of oxidative stress, inflammatory responses, and TGF-β1/pSmad3 signalling.
Wang FM
,Yang YJ
,Ma LL
,Tian XJ
,He YQ
... -
《-》
-
Saroglitazar attenuates renal fibrosis induced by unilateral ureteral obstruction via inhibiting TGF-β/Smad signaling pathway.
Obstructive nephropathy is a common clinical case that causes chronic kidney disease and ultimately progresses to end-stage renal disease. The activation of peroxisome proliferator-activated receptor-α (PPAR-α) reduces tubulointerstitial fibrosis and inflammation associated with obstructive nephropathy.
This study was carried out to investigate the potential effect of saroglitazar, dual PPAR-α/γ agonist, in alleviating renal fibrosis induced by unilateralureteral obstruction (UUO).
Twenty-four male Sprague Dawley rats were haphazardly divided into four groups of six rats each, including sham operated group, vehicle- or saroglitazar-treated UUO and saroglitazar groups. Rats received oral gavage of saroglitazar (3 mg/kg/day) for 13 days. On day 14, all rats were sacrificed; blood and renal tissues were collected.
Saroglitazar inhibited UUO-induced oxidative stress; it decreased the elevated levels of MDA and nitric oxide and increased levels of GSH and SOD in renal tissue. Moreover, saroglitazar repressed UUO-induced inflammation; it decreased the renal levels of nuclear factor kappa B (NF-κB) and interleukin-6 (IL-6). Furthermore, saroglitazar inhibited the accumulation of extracellular matrix via decreasing collagen, hydroxylproline and matrix metalloproteinase-9 (MMP-9) levels. Saroglitazar also decreased the expression of both the alpha smooth muscle actin (α-SMA) and tumor growth factor-beta (TGF-β). These effects were in parallel with reduction in mothers against decapentaplegic homolog 3 (smad3) expression and plasminogen activator inhibitor-1 (PAI-1) levels.
Collectively, the protective impact of saroglitazar might be attributed to its antioxidant, anti-inflammatory and anti-fibrotic effects against UUO-induced tubulointerstitial fibrosis through its regulatory effect on TGF-β1/Smad3 signaling pathway.
Makled MN
,El-Kashef DH
《-》
-
Apamin inhibits renal fibrosis via suppressing TGF-β1 and STAT3 signaling in vivo and in vitro.
Renal fibrosis is a progressive and chronic process that influences kidneys with chronic kidney disease (CKD), irrespective of cause, leading to irreversible failure of renal function and end-stage kidney disease. Among the signaling related to renal fibrosis, transforming growth factor-β1 (TGF-β1) signaling is a major pathway that induces the activation of myofibroblasts and the production of extracellular matrix (ECM) molecules. Apamin, a component of bee venom (BV), has been studied in relation to various diseases. However, the effect of apamin on renal interstitial fibrosis has not been investigated. The aim of this study was to estimate the beneficial effect of apamin in unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β1-induced renal fibroblast activation. This study revealed that obstructive kidney injury induced an inflammatory response, tubular atrophy, and ECM accumulation. However, apamin treatment suppressed the increased expression of fibrotic-related genes, including α-SMA, vimentin, and fibronectin. Administration of apamin also attenuated the renal tubular cells injury and tubular atrophy. In addition, apamin attenuated fibroblast activation, ECM synthesis, and inflammatory cytokines such as TNF-α, IL-1β, and IL-6 by suppressing the TGF-β1-canonical and non-canonical signaling pathways. This study showed that apamin inhibits UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. Apamin inhibited the inflammatory response, tubular atrophy, ECM accumulation, fibroblast activation, and renal interstitial fibrosis through suppression of TGF-β1/Smad2/3 and STAT3 signaling pathways. These results suggest that apamin might be a potential therapeutic agent for renal fibrosis. KEY MESSAGES: UUO injury can induce renal dysfunction; however, apamin administration prevents renal failure in UUO mice. Apamin inhibited renal inflammatory response and ECM deposition in UUO-injured mice. Apamin suppressed the activation of myofibroblasts in vivo and in vitro. Apamin has the anti-fibrotic effect on renal fibrosis via regulation of TGF-β1 canonical and non-canonical signaling.
Gwon MG
,An HJ
,Gu H
,Kim YA
,Han SM
,Park KK
... -
《-》