Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145.

来自 PUBMED

作者:

Zhang YNXie BDSun LChen WJiang SLLiu WBian FTian HLi RK

展开

摘要:

Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to an adverse proliferative phenotype is a hallmark of atherosclerosis or vascular restenosis. However, the genetic modulators responsible for this switch have not been fully elucidated in humans nor have they been correlated with clinical abnormalities. This study investigated genetic mechanisms involved in phenotypic switching of VSMCs at non-defect areas of the aorta in patients with atherosclerosis. Aortic wall samples were obtained from patients with (N = 53) and without (N = 27) atherosclerosis undergoing cardiovascular surgery. Vascular smooth muscle cell cultures were generated, and expression of microRNA-145 (miR-145), its target gene Kruppel-Like Factor 5 (KLF5) and Myocardin (MYOCD, a smooth muscle-specific transcriptional coactivator) were analysed using RT-qPCR, along with expression of relevant proteins. Vascular smooth muscle cells were transduced with miR-145 inhibitor and mimic to determine the effect of miR-145 expression on VSMC proliferation. miR-145 expression decreased while KLF5 expression increased in atherosclerotic aortas. Atherosclerotic samples and VSMCs had decreased expression of contractile markers calponin and alpha smooth muscle actin (α-SMA) and MYOCD. miR-145 inhibitor-transduced VSMCs from non-atherosclerotic patients showed decreased expression of calponin and α-SMA and increased proliferation compared with non-transduced controls, and these levels were close to those of atherosclerotic patients. miR-145 mimic-transduced VSMCs from atherosclerotic patients showed increased expression of calponin and α-SMA and decreased proliferation compared with non-transduced controls, and these levels were close to those found in non-atherosclerotic patients. These data demonstrate that miR-145 modulates the phenotypic switch of VSMCs from a contractile to a proliferative state via KLF5 and MYOCD in atherosclerosis.

收起

展开

DOI:

10.1111/jcmm.12825

被引量:

52

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(705)

参考文献(47)

引证文献(52)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读