Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry for identification of Clostridium species isolated from Saudi Arabia.

来自 PUBMED

作者:

AlMogbel MS

展开

摘要:

The aim of this study was to identify different Clostridium spp. isolated from currency notes from the Ha'il region of Saudi Arabia in September 2014 using MALDI-TOF-MS. Clostridium spp. were identified by Bruker MALDI-TOF-MS and compared with VITEK 2. The confirmation of the presence of different Clostridium spp. was performed by determining the sequence of the 16S ribosomal RNA gene. In this study, 144 Clostridium spp. were isolated. Among these specimens, MALDI-TOF-MS could identify 88.8% (128/144) of the isolates to the species level and 92.3% (133/144) to the genus level, whereas, VITEK 2 identified 77.7% of the (112/144) isolates. The correct identification of the 144 isolates was performed by sequence analysis of the 500bp 16S rRNA gene. The most common Clostridium spp. identified were Clostridium perfringens (67.36%), Clostridium subterminale (14.58%), Clostridium sordellii (9%) and Clostridium sporogenes (9%). The results of this study demonstrate that MALDI-TOF-MS is a rapid, accurate and user friendly technique for the identification of Clostridium spp. Additionally, MALDI-TOF-MS has advantages over VITEK 2 in the identification of fastidious micro-organisms, such as Clostridium spp. Incorporating this technique into routine microbiology would lead to more successful and rapid identification of pathogenic and difficult to identify micro-organisms.

收起

展开

DOI:

10.1016/j.bjm.2016.01.027

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(254)

参考文献(14)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读