MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.

来自 PUBMED

作者:

Madoui MADossat Cd'Agata Lvan Oeveren Jvan der Vossen EAury JM

展开

摘要:

Scaffolding is an essential step in the genome assembly process. Current methods based on large fragment paired-end reads or long reads allow an increase in contiguity but often lack consistency in repetitive regions, resulting in fragmented assemblies. Here, we describe a novel tool to link assemblies to a genome map to aid complex genome reconstruction by detecting assembly errors and allowing scaffold ordering and anchoring. We present MaGuS (map-guided scaffolding), a modular tool that uses a draft genome assembly, a Whole Genome Profiling™ (WGP) map, and high-throughput paired-end sequencing data to estimate the quality and to enhance the contiguity of an assembly. We generated several assemblies of the Arabidopsis genome using different scaffolding programs and applied MaGuS to select the best assembly using quality metrics. Then, we used MaGuS to perform map-guided scaffolding to increase contiguity by creating new scaffold links in low-covered and highly repetitive regions where other commonly used scaffolding methods lack consistency. MaGuS is a powerful reference-free evaluator of assembly quality and a WGP map-guided scaffolder that is freely available at https://github.com/institut-de-genomique/MaGuS. Its use can be extended to other high-throughput sequencing data (e.g., long-read data) and also to other map data (e.g., genetic maps) to improve the quality and the contiguity of large and complex genome assemblies.

收起

展开

DOI:

10.1186/s12859-016-0969-x

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(304)

参考文献(34)

引证文献(7)

来源期刊

BMC BIOINFORMATICS

影响因子:3.304

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读