Multidrug resistance associated protein-1 (MRP1) deficiency attenuates endothelial dysfunction in diabetes.
摘要:
The multidrug resistance associated protein-1 (MRP1) is the main transporter of oxidized glutathione in endothelial cells, and blockade of MRP1 improves endothelial cell dysfunction induced by reactive oxygen species. We therefore investigated the role of MRP1 in hyperglycemia-induced endothelial dysfunction and ROS production. Diabetes was induced in 12 week old male MRP1(-/-)- or corresponding FVB wild-type (wt) mice by injection of streptozotocin (50mg/kg for 5 days). Eight weeks thereafter acetylcholine-induced endothelium-dependent vasorelaxation was blunted in aortic rings from diabetic wt mice (blood glucose levels >250 mg/dl) compared with nondiabetic animals (Rmax 74 ± 2% vs. 94 ± 2%, p<0.001). However in aortae from diabetic mice lacking MRP1, endothelium-dependent vasorelaxation was only mildly impaired (Rmax 87 ± 3%, p<0.001 vs. wt). Endothelium-independent relaxation induced by DEA-NONOate was not different among the groups. Streptozotocin-induced diabetes significantly increased aortic superoxide anion and hydrogen peroxide production in wild-type but not in MRP1(-/-) mice. Aortic levels of glutathione were significantly diminished in STZ-treated FVB mice, while preserved in MRP1(-/-) mice. Further, in cultured human aortic endothelial cells, high glucose levels (30 mmol/l) over 5 days significantly increased superoxide production which was inhibited by downregulation of MRP1 via siRNA. These data indicate that MRP1 plays an important role for endothelial dysfunction and reactive oxygen species production in diabetes and under conditions of hyperglycemia. MRP1 therefore may represent a therapeutic target in treatment of diabetes induced vascular dysfunction.
收起
展开
DOI:
10.1016/j.jdiacomp.2016.02.002
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(224)
参考文献(0)
引证文献(5)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无