Activation of GPER suppresses epithelial mesenchymal transition of triple negative breast cancer cells via NF-κB signals.

来自 PUBMED

作者:

Chen ZJWei WJiang GMLiu HWei WDYang XWu YMLiu HWong CKDu JWang HS

展开

摘要:

The targeted therapy for triple-negative breast cancer (TNBC) is a great challenge due to our poor understanding on its molecular etiology. In the present study, our clinical data showed that the expression of G-protein coupled estrogen receptor (GPER) is negatively associated with lymph node metastasis, high-grade tumor and fibronectin (FN) expression while positively associated with the favorable outcome in 135 TNBC patients. In our experimental studies, both the in vitro migration and invasion of TNBC cells were inhibited by GPER specific agonist G-1, through the suppression of the epithelial mesenchymal transition (EMT). The G-1 treatment also reduced the phosphorylation, nuclear localization, and transcriptional activities of NF-κB. While over expression of NF-κB attenuated the action of G-1 in suppressing EMT. Our data further illustrated that the phosphorylation of GSK-3β by PI3K/Akt and ERK1/2 mediated, at least partially, the inhibitory effect of G-1 on NF-κB activities. It was further confirmed in a study of MDA-MB-231 tumor xenografts in nude mice. The data showed that G-1 inhibited the in vivo growth and invasive potential of TNBC via suppression of EMT. Our present study demonstrated that an activation of GPER pathway elicits tumor suppressive actions on TNBC, and supports the use of G-1 therapeutics for TNBC metastasis.

收起

展开

DOI:

10.1016/j.molonc.2016.01.002

被引量:

37

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(369)

参考文献(56)

引证文献(37)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读