Metabolism and Action of 25-Hydroxy-19-nor-Vitamin D₃ in Human Prostate Cells.
摘要:
Since the discovery of 1α,25(OH)2D3 in the early 1970s, it has been widely accepted that this metabolite is responsible for the biological actions of vitamin D. Likewise, we have assumed that 25(OH)-19-nor-D3-dependent growth inhibition of human prostate PZ-HPV-7 cells was the result of its subsequent conversion to 1α,25(OH)2-19-nor-D3, catalyzed by CYP27B1 within the prostate cells. However, further in vitro studies in a reconstituted system using recombinant CYP27B1 revealed that 25(OH)-19-nor-D3 was hardly converted to 1α,25(OH)2-19-nor-D3 by the enzyme. The kinetic analysis of 1α-hydroxylation of 25(OH)D3 and 25(OH)-19-nor-D3 demonstrated that the k(cat)/K(m) for 25(OH)-19-nor-D3 is less than 0.1% of that for 25(OH)D3. When 25(OH)-19-nor-D3 was added to cultured PZ-HPV-7 cells, eight metabolites were detected, while no 1α,25(OH)2-19-nor-D3 was found. In addition, the time course of VDR translocation into the nucleus induced by 100 nM 25(OH)-19-nor-D3, and the subsequent transactivation of CYP24A1 gene were almost identical to those induced by 1 nM 1α,25(OH)2-19-nor-D3. These results strongly suggest that 25(OH)-19-nor-D3 binds directly to VDR as a ligand to transport VDR into the nucleus to induce CYP24A1 gene transactivation. Furthermore, knockdown of CYP27B1 gene did not affect the antiproliferative activity of 25(OH)-19-nor-D3, whereas VDR knockdown attenuated the effect, suggesting that the antiproliferative activity of 25(OH)-19-nor-D3 is VDR dependent but CYP27B1 independent. Finally, our recent studies using the same cell line demonstrate that 25(OH)D3 can act as a VDR agonist to induce gene transactivation. These findings suggest that vitamin D analogs without 1α-hydroxyl group could be developed as drugs for osteoporosis or cancer treatment.
收起
展开
DOI:
10.1016/bs.vh.2015.10.009
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(243)
参考文献(0)
引证文献(1)
来源期刊
影响因子:2.245
JCR分区: 暂无
中科院分区:暂无