Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation.
Maternal ageing and ovarian stimulation result in the accumulation of mitochondrial DNA (mtDNA) deletions and heteroplasmy in individual oocytes from a novel bovine model for human assisted reproductive technology (ART).
The levels of mtDNA deletions detected in oocytes increased with ovarian ageing. Low levels of mtDNA heteroplasmy were apparent across oocytes and no relationship was identified with respect to ovarian ageing or ovarian stimulation.
Oocyte quality decreases with ovarian ageing and it is postulated that the mtDNA may have a role in this decline. The impact of ovarian stimulation on oocyte quality is poorly understood. Human studies investigating these effects are often limited by the use of low quality oocytes and embryos, variation in age and ovarian stimulation regimens within the patients studied, as well as genetic and environmental variability. Further, no study has investigated mtDNA heteroplasmy in individual oocytes using next-generation sequencing (NGS), and little is known about whether the oocyte accumulates heteroplasmic mtDNA mutations following ageing or ovarian stimulation.
A novel bovine model for the effect of stimulation and age in human ART was undertaken using cows generated by somatic cell nuclear transfer (SCNT) from one founder, to produce a homogeneous population with reduced genetic and environmental variability. Oocytes and somatic tissues were collected from young (3 years of age; n = 4 females) and old (10 years of age; n = 5 females) cow clones following multiple natural ovarian cycles, as well as oocytes following multiple mild (FSH only) and standard (based on human a long GnRH agonist protocol) ovarian stimulation cycles. In addition, oocytes were recovered in a natural cycle from naturally conceived cows aged 4-13.5 years (n = 10) to provide a heterogeneous cohort for mtDNA deletion studies. The presence or absence of mtDNA deletions were investigated using long-range PCR in individual oocytes (n = 62). To determine the detection threshold for mtDNA heteroplasmy levels in individual oocytes, a novel NGS methodology was validated; artificial mixtures of the Bos taurus and Bos indicus mitochondrial genome were generated at 1, 2, 5, 15 and 50% ratios to experimentally mimic different levels of heteroplasmy. This NGS methodology was then employed to determine mtDNA heteroplasmy levels in single oocytes (n = 24). Oocyte mtDNA deletion and heteroplasmy data were analysed by binary logistic regression with respect to the effects of ovarian ageing and ovarian stimulation regimens.
Ovarian ageing, but not ovarian stimulation, increased the number of oocytes exhibiting mtDNA deletions (P = 0.04). A minimum mtDNA heteroplasmy level of 2% was validated as a sensitive (97-100%) threshold for variant detection in individual oocytes using NGS. Few mtDNA heteroplasmies were detected across the individual oocytes, with only 15 oocyte-specific variants confined to two of the 24 oocytes studied. There was no relationship (P > 0.05) evident between ovarian ageing or ovarian stimulation and the presence of mtDNA heteroplasmies.
The low number of oocytes collected from the natural ovarian cycles limited the analysis. Fertilization and developmental potential of the oocytes was not assessed as the oocytes were destroyed for mtDNA deletion and heteroplasmy analysis.
If the findings of this model apply to the human, this study suggests that the incidence of mtDNA deletions increases with age, but not with degree of ovarian stimulation, while the frequency of mtDNA heteroplasmies may be low regardless of ovarian ageing or level of ovarian stimulation.
Funding was provided by Fertility Associates, the Nurture Foundation for Reproductive Research, the Fertility Society of Australia, and the Auckland Medical Research Foundation. J.C.P. is a shareholder of Fertility Associates and M.P.G. received a fellowship from Fertility Associates. The other authors of this manuscript declare no conflict of interest that could be perceived as prejudicing the impartiality of the reported research.
Hammond ER
,Green MP
,Shelling AN
,Berg MC
,Peek JC
,Cree LM
... -
《-》
Extensive analysis of mitochondrial DNA quantity and sequence variation in human cumulus cells and assisted reproduction outcomes.
Are relative mitochondrial DNA (mtDNA) content and mitochondrial genome (mtGenome) variants in human cumulus cells (CCs) associated with oocyte reproductive potential and assisted reproductive technology (ART) outcomes?
Neither the CC mtDNA quantity nor the presence of specific mtDNA genetic variants was associated with ART outcomes, although associations with patient body mass index (BMI) were detected, and the total number of oocytes retrieved differed between major mitochondrial haplogroups.
CCs fulfil a vital role in the support of oocyte developmental competence. As with other cell types, appropriate cellular function is likely to rely upon adequate energy production, which in turn depends on the quantity and genetic competence of the mitochondria. mtDNA mutations can be inherited or they can accumulate in somatic cells over time, potentially contributing to aging. Such mutations may be homoplasmic (affecting all mtDNA in a cell) or they may display varying levels of heteroplasmy (affecting a proportion of the mtDNA). Currently, little is known concerning variation in CC mitochondrial genetics and how this might influence the reproductive potential of the associated oocyte.
This was a prospective observational study involving human CCs collected with 541 oocytes from 177 IVF patients. mtDNA quantity was measured in all the samples with a validated quantitative PCR method and the entire mtGenome was sequenced in a subset of 138 samples using a high-depth massively parallel sequencing approach. Associations between relative mtDNA quantity and mtGenome variants in CCs and patient age, BMI (kg/m2), infertility diagnosis and ART outcomes were investigated.
Massively parallel sequencing permitted not only the accurate detection of mutations but also the precise quantification of levels of mutations in cases of heteroplasmy. Sequence variants in the mtDNA were evaluated using Mitomaster and HmtVar to predict their potential impact.
The relative mtDNA CC content was significantly associated with BMI. No significant associations were observed between CC mtDNA quantity and patient age, female infertility diagnosis or any ART outcome variable. mtGenome sequencing revealed 4181 genetic variants with respect to a reference genome. The COXI locus contained the least number of coding sequence variants, whereas ATPase8 had the most. The number of variants predicted to affect the ATP production differed significantly between mitochondrial macrohaplogroups. The total number of retrieved oocytes was different between the H-V and J-T as well as the U-K and J-T macrohaplogroups. There was a non-significant increase in mtDNA levels in CCs with heteroplasmic mitochondrial mutations.
N/A.
Although a large number of samples were analysed in this study, it was not possible to analyse all the CCs from every patient. Also, the results obtained with respect to specific clinical outcomes and macrohaplogroups should be interpreted with caution due to the smaller sample sizes when subdividing the dataset.
These findings suggest that the analysis of mtDNA in CCs is unlikely to provide an advantage in terms of improved embryo selection during assisted reproduction cycles. Nonetheless, our data raise interesting biological questions, particularly regarding the interplay of metabolism and BMI and the association of mtDNA haplogroup with oocyte yield in ovarian stimulation cycles.
This study was funded by National Institutes of Health grant 5R01HD092550-02. D.J.N. and C.R. co-hold patent US20150346100A1 and D.J.N. holds US20170039415A1, both for metabolic imaging methods. D.W. receives support from the NIHR Oxford Biomedical Research Centre. The remaining authors have no conflicts of interest to declare.
Kumar K
,Venturas M
,Needleman DJ
,Racowsky C
,Wells D
... -
《-》
Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.
Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes?
Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing.
Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing.
This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group.
mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother.
There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being significantly different (respectively 0.321, SD = 0.547 and 1.075, SD = 1.158) (P < 0.0001). Variants with a potential functional consequence were also overrepresented in CCs compared with oocytes (P = 0.0019).
N/A.
Limitations may be due to the use of immature oocytes discarded during the assisted reproductive technology procedure, the small size of the sample, and the high-throughput sequencing technology that might not have detected heteroplasmy levels lower than 2%.
The alteration of mtDNA integrity in oocytes during ovarian ageing is a recurring question to which our pilot study suggests a reassuring answer.
This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centers, INSERM and the CNRS. There are nocompeting interests.
Boucret L
,Bris C
,Seegers V
,Goudenège D
,Desquiret-Dumas V
,Domin-Bernhard M
,Ferré-L'Hotellier V
,Bouet PE
,Descamps P
,Reynier P
,Procaccio V
,May-Panloup P
... -
《-》
Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice.
Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8 weeks and 45 mice aged 9-11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 μm to more than 80 μm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant.
During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis.
N/A.
Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice.
Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age.
This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.
May-Panloup P
,Brochard V
,Hamel JF
,Desquiret-Dumas V
,Chupin S
,Reynier P
,Duranthon V
... -
《-》