Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: implications for fertility disorders.

来自 PUBMED

作者:

Brukman NGMiyata HTorres PLombardo DCaramelo JJIkawa MDa Ros VGCuasnicú PS

展开

摘要:

We hypothesize that fertility disorders in patients with aberrant expression of Cysteine-RIch Secretory Protein 2 (CRISP2) could be linked to the proposed functional role of this protein in fertilization. Our in vivo and in vitro observations reveal that Crisp2-knockout mice exhibit significant defects in fertility-associated parameters under demanding conditions, as well as deficiencies in sperm fertilizing ability, hyperactivation development and intracellular Ca(2+) regulation. Testicular CRISP2 is present in mature sperm and has been proposed to participate in gamete fusion in both humans and rodents. Interestingly, evidence in humans shows that aberrant expression of CRISP2 is associated with male infertility. A mouse line carrying a deletion in the sixth exon of the Crisp2 gene was generated. The analyses of the reproductive phenotype of Crisp2(-/-) adult males included the evaluation of their fertility before and after being subjected to unilateral vasectomy, in vivo fertilization rates obtained after mating with either estrus or superovulated females, in vitro sperm fertilizing ability and different sperm functional parameters associated with capacitation such as tyrosine phosphorylation (by western blot), acrosome reaction (by Coomassie Blue staining), hyperactivation (by computer-assisted sperm analysis) and intracellular Ca(2+) levels (by flow cytometry). Crisp2(-/-) males presented normal fertility and in vivo fertilization rates when mated with estrus females. However, the mutant mice showed clear defects in those reproductive parameters compared with controls under more demanding conditions, i.e. when subjected to unilateral vasectomy to reduce the number of ejaculated sperm (n = 5; P< 0.05), or when mated with hormone-treated females containing a high number of eggs in the ampulla (n ≥ 5; P< 0.01). In vitro fertilization studies revealed that Crisp2(-/-) sperm exhibited deficiencies to penetrate the egg vestments (i.e. cumulus oophorus and zona pellucida) and to fuse with the egg (n ≥ 6; P< 0.01). Consistent with this, Crisp2-null sperm showed lower levels of hyperactivation (n = 7; P< 0.05), a vigorous motility required for penetration of the egg coats, as well as a dysregulation in intracellular Ca(2+) levels associated with capacitation (n = 5; P< 0.001). The analysis of the possible mechanisms involved in fertility disorders in men with abnormal expression of CRISP2 was carried out in Crisp2 knockout mice due to the ethical and technical problems inherent to the use of human gametes for fertilization studies. Our findings in mice showing that Crisp2(-/-) males exhibit fertility and fertilization defects under demanding conditions support fertilization defects in sperm as a mechanism underlying infertility in men with aberrant expression of CRISP2. Moreover, our observations in mice resemble the situation in humans where fertility disorders can or cannot be detected depending on the accumulation of own individual defects or the fertility status of the partner. Finally, the fact that reproductive defects in mice are masked by conventional mating highlights the need of using different experimental approaches to analyze male fertility. This study was supported by the World Health Organization (H9/TSA/037), the National Research Council of Argentina (PIP 2009-290), the National Agency for Scientific and Technological Promotion of Argentina (PICT 2011, 2023) and the Rene Baron Foundation to P.S.C. and by the MEXT of Japan to M.I. The authors declare that there are no conflicts of interest.

收起

展开

DOI:

10.1093/molehr/gaw005

被引量:

21

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(405)

参考文献(0)

引证文献(21)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读