Phospholamban ablation rescues the enhanced propensity to arrhythmias of mice with CaMKII-constitutive phosphorylation of RyR2 at site S2814.

来自 PUBMED

摘要:

Mice with Ca(2+) -calmodulin-dependent protein kinase (CaMKII) constitutive pseudo-phosphorylation of the ryanodine receptor RyR2 at Ser2814 (S2814D(+/+) mice) exhibit a higher open probability of RyR2, higher sarcoplasmic reticulum (SR) Ca(2+) leak in diastole and increased propensity to arrhythmias under stress conditions. We generated phospholamban (PLN)-deficient S2814D(+/+) knock-in mice by crossing two colonies, S2814D(+/+) and PLNKO mice, to test the hypothesis that PLN ablation can prevent the propensity to arrhythmias of S2814D(+/+) mice. PLN ablation partially rescues the altered intracellular Ca(2+) dynamics of S2814D(+/+) hearts and myocytes, but enhances SR Ca(2+) sparks and leak on confocal microscopy. PLN ablation diminishes ventricular arrhythmias promoted by CaMKII phosphorylation of S2814 on RyR2. PLN ablation aborts the arrhythmogenic SR Ca(2+) waves of S2814D(+/+) and transforms them into non-propagating events. A mathematical human myocyte model replicates these results and predicts the increase in SR Ca(2+) uptake required to prevent the arrhythmias induced by a CaMKII-dependent leaky RyR2. Mice with constitutive pseudo-phosphorylation at Ser2814-RyR2 (S2814D(+/+) ) have increased propensity to arrhythmias under β-adrenergic stress conditions. Although abnormal Ca(2+) release from the sarcoplasmic reticulum (SR) has been linked to arrhythmogenesis, the role played by SR Ca(2+) uptake remains controversial. We tested the hypothesis that an increase in SR Ca(2+) uptake is able to rescue the increased arrhythmia propensity of S2814D(+/+) mice. We generated phospholamban (PLN)-deficient/S2814D(+/+) knock-in mice by crossing two colonies, S2814D(+/+) and PLNKO mice (SD(+/+) /KO). SD(+/+) /KO myocytes exhibited both increased SR Ca(2+) uptake seen in PLN knock-out (PLNKO) myocytes and diminished SR Ca(2+) load (relative to PLNKO), a characteristic of S2814D(+/+) myocytes. Ventricular arrhythmias evoked by catecholaminergic challenge (caffeine/adrenaline) in S2814D(+/+) mice in vivo or programmed electric stimulation and high extracellular Ca(2+) in S2814D(+) /(-) hearts ex vivo were significantly diminished by PLN ablation. At the myocyte level, PLN ablation converted the arrhythmogenic Ca(2+) waves evoked by high extracellular Ca(2+) provocation in S2814D(+/+) mice into non-propagated Ca(2+) mini-waves on confocal microscopy. Myocyte Ca(2+) waves, typical of S2814D(+/+) mice, could be evoked in SD(+/+) /KO cells by partially inhibiting SERCA2a. A mathematical human myocyte model replicated these results and allowed for predicting the increase in SR Ca(2+) uptake required to prevent the arrhythmias induced by a Ca(2+) -calmodulin-dependent protein kinase (CaMKII)-dependent leaky RyR2. Our results demonstrate that increasing SR Ca(2+) uptake by PLN ablation can prevent the arrhythmic events triggered by SR Ca(2+) leak due to CaMKII-dependent phosphorylation of the RyR2-S2814 site and underscore the benefits of increasing SERCA2a activity on SR Ca(2+) -triggered arrhythmias.

收起

展开

DOI:

10.1113/JP271622

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(881)

参考文献(60)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读