Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
摘要:
Enzymatic dephosphorylation of phytic acid (inositol hexakisphosphate) in cereals may improve mineral bioavailability in humans. This study quantified enzymatic dephosphorylation of phytic acid by measuring inositol tri- to hexakisphosphate (InsP3-6) degradation and iron and zinc release during microbial phytase action on wheat bran, rice bran and sorghum under simulated gastric conditions. InsP3-6 was depleted within 15-30 min of incubation using an Aspergillus niger phytase or Escherichia coli phytase under simulated gastric conditions, with the two enzymes dephosphorylating cereal phytic acid at similar rates and to similar extents. Microbial phytase-catalyzed phytate dephosphorylation was accompanied by increased iron and zinc release from the cereal substrates. However, for wheat bran at pH 5, the endogenous wheat phytase activity produced mineral release equal to or better than that of the microbial phytases. No increases in soluble cadmium, lead or arsenic were observed with microbial phytase-catalyzed phytate dephosphorylation. Microbial phytase treatment abated phytate chelation hence enhanced the release of iron and zinc from phytate-rich cereals under simulated gastric conditions. The data infer that acid-stable microbial phytases can help improve iron bioavailability from phytate-rich cereal substrates via post-ingestion activity. © 2015 Society of Chemical Industry.
收起
展开
DOI:
10.1002/jsfa.7564
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(458)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无