Calcium-activated chloride current determines action potential morphology during calcium alternans in atrial myocytes.
摘要:
Cardiac alternans--periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic calcium transient (CaT) amplitude--is a high risk indicator for cardiac arrhythmias and sudden cardiac death. However, it remains an unresolved issue whether beat-to-beat alternations in intracellular Ca(2+) ([Ca(2+)]i ) or AP morphology are the primary cause of pro-arrhythmic alternans. Here we show that in atria AP alternans occurs secondary to CaT alternans. CaT alternans leads to complex beat-to-beat changes in Ca(2+)-regulated ion currents that determine alternans of AP morphology. We report the novel finding that alternans of AP morphology is largely sustained by the activity of Ca(2+)-activated Cl(-) channels (CaCCs). Suppression of the CaCCs significantly reduces AP alternans, while CaT alternans remains unaffected. The demonstration of a major role of CaCCs in the development of AP alternans opens new possibilities for atrial alternans and arrhythmia prevention. Cardiac alternans, described as periodic beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias and sudden cardiac death. We investigated mechanisms of cardiac alternans in single rabbit atrial myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. Beat-to-beat alternations of AP morphology and CaT amplitude revealed a strong quantitative correlation. Application of voltage clamp protocols in the form of pre-recorded APs (AP-clamp) during pacing-induced CaT alternans revealed a Ca(2+)-dependent current consisting of a large outward component (4.78 ± 0.58 pA pF(-1) in amplitude) coinciding with AP phases 1 and 2 that was followed by an inward current (-0.42 ± 0.03 pA pF(-1); n = 21) during AP repolarization. Approximately 90% of the initial outward current was blocked by substitution of Cl(-) ions or application of the Cl(-) channel blocker DIDS identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The prominent AP prolongation at action potential duration at 30% repolarization level during the small alternans CaT was due to reduced ICaCC. Inhibition of Cl(-) currents abolished AP alternans, but failed to affect CaT alternans, indicating that disturbances in Ca(2+) signalling were the primary event leading to alternans, and ICaCC played a decisive role in shaping the beat-to-beat alternations in AP morphology observed during alternans.
收起
展开
DOI:
10.1113/JP271887
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(296)
参考文献(76)
引证文献(17)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无