-
Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver disease through enhancing lipid oxidation and alleviating oxidation stress.
Mongolian medicine is an important constituent of traditional Chinese medicine. Its representative prescription, Li-Gan-Shi-Liu-Ba-Wei-San (LGSLBWS), is widely used for long-term treatment of chronic liver disease and nonalcoholic fatty liver disease (NAFLD).
This study explored the effects and mechanism of LGSLBWS on NAFLD.
NAFLD rat model was established with high-fat diet. The effects of LGSLBWS on lipid metabolism, liver function, and hepatic morphology were observed in NAFLD rats. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents in the liver, as well as the expression levels of peroxisome proliferator-activated receptor (PPAR)α, PPARβ, inhibitor of nuclear factor κB α(IκBα), and inducible nitric oxide synthase (iNOS) were all detected. Finally, the effects of LGSLBWS on fatty acid oxidation, PPARα, PPARβ, IκBα, and iNOS were determined in HepG2 cells.
LGSLBWS significantly reduced the fat deposition in the liver and the serum aspartate aminotransferase levels in NAFLD rats. Serum triglyceride and free fatty acid levels were reduced by LGSLBWS. Total cholesterol and triglyceride contents in the liver were also downregulated. SOD and MDA levels were increased and decreased by LGSLBWS, respectively. LGSLBWS can significantly promote fatty acid oxidation of HepG2 cells. Upregulation of PPARα, PPARβ, and IκBα and downregulation of iNOS by LGSLBWS were both observed in the NAFLD model and HepG2 cells.
LGSLBWS can significantly improve NAFLD by enhancing fatty acid oxidation and alleviating oxidative stress.
Jiang Y
,Chen L
,Wang H
,Narisi B
,Chen B
... -
《-》
-
Protective effect and mechanism of Qiwei Tiexie capsule on 3T3-L1 adipocytes cells and rats with nonalcoholic fatty liver disease by regulating LXRα, PPARγ, and NF-κB-iNOS-NO signaling pathways.
Qiwei Tiexie capsule (QWTX) is a representative prescription of Tibetan medicine, which is widely used for long-term treatment of chronic liver disease and nonalcoholic fatty liver disease (NAFLD).
This study explored the effects and mechanism of QWTX on 3T3-L1 adipocytes and NAFLD.
The 3T3-L1 preadipocytes and NAFLD rat model were used in the study. In 3T3-L1 cells, the cytotoxicity of QWTX was tested by CKK-8, and glucose uptake and fat acid oxidation were assessed by 2-deoxy-D-[3H] glucose and [1-14C] palmitic acid, respectively. The expression levels of carnitine palmitoyltransferase-1 (CPT-1), liver X receptor α (LXRα), peroxisome proliferator-activated receptor (PPAR) γ, inducible nitric oxide synthase (iNOS), ikappa B α (IκBα), and AKT were determined by PCR and western blot. NAFLD was established by the administration of fat emulsion and sucrose for 9 weeks. The effects of QWTX on lipid metabolism, liver function, and hepatic morphology were observed in NAFLD rats by HE and transmission electron microscope. Serum level of nitric oxide (NO) and fee fatty acid (FFA), superoxide dismutase (SOD) and malondialdehyde (MDA) contents in the liver, as well as the expression levels of Cytochrome P450 2E1 (CYP2E1), NF-κB, monocyte chemoattractant protein 1 (MCP-1), CPT-1, LXRα, PPARα, PPARβ/δ, PPARγ, and iNOS were all detected.
QWTX showed no cell cytotoxicity in 3T3-L1 preadipocyte cells, and increased the 14CO2 production rate to 4.15, which indicated the reducing the fatty accumulation. In NAFLD, QWTX attenuated liver steatosis, fat vacuoles and inflammation from the HE staining and electron micrograph tests. For the oxidative stress biomarkers, serum FFA level was reduced and serum NO level was enhanced after QWTX treatment. In liver tissue, SOD was decreased and MDA was significantly increased in NAFLD, and both of them were restored by QWTX. NF-κB and CYP2E1 were also upregulated in NAFLD, while downregulated by QWTX. Downregulation of LXRα, PPARγ and iNOS by QWTX were both observed in the 3T3-L1 adipocytes and NAFLD model.
QWTX protected the liver injury in differentiated 3T3-L1 adipocytes and NAFLD by regulating the LXRα, PPARγ, and NF-κB-iNOS-NO signal pathways.
Suolang PC
,Liu BQ
,Chen J
,De J
,Nima ZB
,Dunzhu CR
... -
《-》
-
Hugan Qingzhi medication ameliorates hepatic steatosis by activating AMPK and PPARα pathways in L02 cells and HepG2 cells.
Hugan Qingzhi tablet (HQT), a lipid- lowering traditional Chinese medicine formula, has been used for the prevention and treatment of nonalcoholic fatty liver (NAFLD).
This study was realized to evaluate the effects of HQT-medicated serum on hepatic steatosis using in vitro experiments with cells and explore the relevant mechanisms with method of serum pharmacology.
A model of hepatic steatosis in the L02 and HepG2 cells was induced by free fatty acid (FFA). The components in the HQT-medicated serum were assayed by high-performance liquid chromatography. Intracellular lipid droplets were detected by Oil Red O staining, and their ultrastructure was examined by transmission electron microscope. The biochemical parameters, including triglyceride (TG), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), total antioxidant capacity (T-AOC), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH), were measured with commercial kits. Furthermore, the expression of adiponectin, AMP-activated protein kinase (AMPK) phosphorylation, sterol regulatory element-binding protein 1 (SREBP-1), peroxisome proliferator activated receptor-α (PPARα), carnitine palmitoyltransferase 1 (CPT-1), and acetyl-CoA oxidase 1 (ACOX1) was analyzed by Western blot and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR).
Moderate- and high-dose HQT-medicated serum reduced (P<0.05 or P<0.01) the accumulation of lipid droplets and the cellular TG content in L02 and HepG2 cells. They caused significant reductions (P<0.01) in LDH, AST, ALT and MDA and significant increase (P<0.05 or P<0.01) in T-AOC in the culture medium. They also caused increase (P<0.05 or P<0.01) in GSH level and SOD activity in FFA-induced steatotic L02 and HepG2 cells. Furthermore, moderate- and high-dose HQT-medicated serum enhanced (P<0.01) adiponectin expression in a concentration-dependent manner and increased (P<0.05 or P<0.01) the phosphorylation of AMPK and the expression of PPARα, CPT-1, and ACOX1, and reduced (P<0.05 or P<0.01) the expression of SREBP-1.
The results suggested that HQT-medicated serum exerts a preventive effect against hepatic steatosis, and the potential mechanism might be activation of AMPK and PPARα pathways.
Yin J
,Luo Y
,Deng H
,Qin S
,Tang W
,Zeng L
,Zhou B
... -
《-》
-
PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats.
Peroxisome proliferator-activated receptor (PPAR) α/γ may control lipid metabolism and inflammatory response by regulating the downstream target genes, and play a crucial role in the process of non-alcoholic steatohepatitis (NASH) formation, but the difference and interaction between PPARα and PPARγ are poorly understood. The rat model with NASH was established by orally feeding high-fat and high-sucrose emulsion for 6weeks. The results shown that after the model rats were simultaneously treated with PPARα/γ agonists, the total cholesterol (TC), triglyceride (TG) and inflammatory cytokine levels in serum and hepatic tissue, the hepatic steatosis and inflammatory cellular infiltration were decreased, and were consistent with the results of hepatic lipogenic gene and nuclear factor (NF)-κB protein expressions. Conversely, these indexes were increased by PPARα/γ antagonist treatment. Compared with the model group, the serum free fatty acid (FFA) level was increased in the PPARα agonist-treated group, decreased in the PPARγ agonist-treated group, and unchanged in the PPARα/γ agonists-treated group. The hepatic FFA level was low in the PPARα/γ agonists-treated groups, but no significant variation in the PPARα/γ antagonists-treated groups. The increments of hepatic reduced glutathione (GSH) and superoxide dismutase (SOD) contents in the PPARα/γ agonists-treated groups were accompanied by decreased hepatic malondialdehyde (MDA) content. These findings demonstrated that PPARα/γ activation might decrease the hepatic lipid accumulation, oxidative stress and inflammatory cytokine production, and PPARγ could counterbalance the adverse effect of PPARα on circulating FFA. It was concluded that the integrative application of PPARα and PPARγ agonists might exert a synergic inhibitory effect on NASH formation through the modulation of PPARα/γ-mediated lipogenic and inflammatory gene expressions.
Zhang Y
,Cui Y
,Wang XL
,Shang X
,Qi ZG
,Xue J
,Zhao X
,Deng M
,Xie ML
... -
《-》
-
Beneficial effects of neomangiferin on high fat diet-induced nonalcoholic fatty liver disease in rats.
This study was carried out to determine the effect and mechanism of action of neomangiferin (NG) on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in rats. NAFLD rats were randomly assigned into several groups of equal number. NG (50, 25mg/kg·day(-1) BW) and lipanthyl (PT, 5mg/kg·day(-1) BW) were given to the NAFLD rats, respectively. In the study, serum lipids, metabolic rate, liver fat, liver lipids and histology were examined. To further investigate the molecular mechanism of the effect of NG on NAFLD, expression levels of mRNA and protein for peroxisome proliferator-activated receptor α (PPARα), fatty acid transport protein 2 (FATP2), long-chain-fatty-acid - CoA ligase 1 (ACSL1) and carnitine palmitoyltransferase 1a (CPT1a) in the liver were determined by Real Time-PCR and western blot analysis, respectively. NG administration significantly reduced the final body weight, liver fat accumulation, and serum triglyceride (TG), total cholesterol (TC) concentrations, low-density lipoprotein cholesterol (LDL-C), glucose (GLU) levels, and hepatic TG, TC, malondialdehyde (MDA) levels, but increased serum high-density lipoprotein cholesterol (HDL-C) and hepatic superoxide dismutase (SOD) levels. NG upregulated the mRNA and protein expression of PPARα and CPT1a, but downregulated the mRNA and protein expression of FATP2 and ACSL1 in the liver. These results suggested that NG can regulate NAFLD partly by modulating the expression levels of genes involved in FFA uptake and lipid oxidation.
Zhou C
,Zhou J
,Han N
,Liu Z
,Xiao B
,Yin J
... -
《-》