Tumour islet Foxp3+ T-cell infiltration predicts poor outcome in nonsmall cell lung cancer.

来自 PUBMED

作者:

O'Callaghan DSRexhepaj EGately KCoate LDelaney DO'Donnell DMKay EO'Connell FGallagher WMO'Byrne KJ

展开

摘要:

The impact of host immunity on outcome in nonsmall cell lung cancer (NSCLC) is controversial. We examined the relationship between lymphoid infiltration patterns in NSCLC and prognosis.Tumour- and stroma-infiltrating CD3(+), CD8(+) and forkhead box P3 (Foxp3)(+) T-lymphocytes were identified using immunohistochemistry and a novel image analysis algorithm to assess total, cytotoxic and regulatory T-lymphocyte counts, respectively, in 196 NSCLC cases. The median cell count was selected as a cut-point to define patient subgroups and the ratio of the corresponding tumour islet:stroma (TI/S) counts was determined.There was a positive association between overall survival and increased CD8(+) TI/S ratio (hazard ratio (HR) for death 0.44, p<0.001) but an inverse relationship between Foxp3(+) TI/S ratio and overall survival (HR 4.86, p<0.001). Patients with high CD8(+) islet (HR 0.48, p<0.001) and Foxp3(+) stromal (HR 0.23, p<0.001) counts had better survival, whereas high CD3(+) and CD8(+) stromal counts and high Foxp3(+) islet infiltration conferred a worse survival (HR 1.55, 2.19 and 3.14, respectively). By multivariate analysis, a high CD8(+) TI/S ratio conferred an improved survival (HR 0.48, p=0.002) but a high Foxp3(+) TI/S ratio was associated with worse survival (HR 3.91, p<0.001).Microlocalisation of infiltrating T-lymphocytes is a powerful predictor of outcome in resected NSCLC.

收起

展开

DOI:

10.1183/13993003.00176-2014

被引量:

36

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(349)

参考文献(0)

引证文献(36)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读