Prevalent bacterial vaginosis infection - a risk factor for incident sexually transmitted infections in women in Durban, South Africa.

来自 PUBMED

作者:

Abbai NSReddy TRamjee G

展开

摘要:

The association between bacterial vaginosis (BV) and incident sexually transmitted infections (STIs) in a cohort of high-risk women from Durban, South Africa was investigated in this study. We undertook a secondary analysis of the Methods for Improving Reproductive Health in Africa trial that assessed effectiveness of the latex diaphragm and lubricant gel on HIV prevention among women. During study visits, urine specimens were collected for testing for Neisseria gonorrhoeae, Chlamydia trachomatis and Trichomonas vaginalis The presence of BV was based on vaginal pH and wet mount test assessments. The association between BV and the risk for incident STIs was determined using the Cox proportional hazards model. Prevalence of BV was 31% in a cohort of 435 women tested at baseline. Among these women, BV was significantly associated with incident Trichomonas vaginalis (14.6 per 100 PY, p = 0.03) and Chlamydia trachomatis infections (15.8 per 100 PY, p = 0.04). BV remained a significant predictor for Trichomonas vaginalis infections even after adjusting for potential confounders such as age and marital status (HR: 1.60, 95% CI: 1.00, 2.57, p = 0.04). Our study showed an association between baseline BV infections and incident Trichomonas vaginalis and Chlamydia trachomatis infections. Women with BV infections should be counselled on the use of condoms and the risk of new STIs.

收起

展开

DOI:

10.1177/0956462415616038

被引量:

26

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(501)

参考文献(0)

引证文献(26)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读