Comparison of the Therapeutic Response to Treatment with a 177Lu-Labeled Somatostatin Receptor Agonist and Antagonist in Preclinical Models.

来自 PUBMED

作者:

Dalm SUNonnekens JDoeswijk GNde Blois Evan Gent DCKonijnenberg MWde Jong M

展开

摘要:

Peptide receptor scintigraphy and peptide receptor radionuclide therapy using radiolabeled somatostatin receptor (SSTR) agonists are successfully used in the clinic for imaging and treatment of neuroendocrine tumors. Contrary to the paradigm that internalization and the resulting accumulation of radiotracers in cells is necessary for efficient tumor targeting, recent studies have demonstrated the superiority of radiolabeled SSTR antagonists for imaging purposes, despite little to no internalization in cells. However, studies comparing the therapeutic antitumor effects of radiolabeled SSTR agonists versus antagonists are lacking. The aim of this study was to directly compare the therapeutic effect of (177)Lu-DOTA-octreotate, an SSTR agonist, and (177)Lu-DOTA-JR11, an SSTR antagonist. We analyzed radiotracer uptake (both membrane-bound and internalized fractions) and the produced DNA double-strand breaks, by determining the number of p53 binding protein 1 foci, after incubating SSTR2-positive cells with (177)Lu-diethylene triamine pentaacetic acid, (177)Lu-DOTA-octreotate, or (177)Lu-DOTA-JR11. Also, biodistribution studies were performed in tumor-xenografted mice to determine the optimal dose for therapy experiments. Afterward, in vivo therapy experiments comparing the effect of (177)Lu-DOTA-octreotate and (177)Lu-DOTA-JR11 were performed in this same animal model. We found a 5-times-higher uptake of (177)Lu-DOTA-JR11 than of (177)Lu-DOTA-octreotate. The major part (88% ± 1%) of the antagonist uptake was membrane-bound, whereas 74% ± 3% of the total receptor agonist uptake was internalized. Cells treated with (177)Lu-DOTA-JR11 showed 2 times more p53-binding protein 1 foci than cells treated with (177)Lu-DOTA-octreotate. Biodistribution studies with (177)Lu-DOTA-JR11 (0.5 μg/30 MBq) resulted in the highest tumor radiation dose of 1.8 ± 0.7 Gy/MBq, 4.4 times higher than the highest tumor radiation dose found for (177)Lu-DOTA-octreotate. In vivo therapy studies with (177)Lu-DOTA-octreotate and (177)Lu-DOTA-JR11 resulted in a tumor growth delay time of 18 ± 5 and 26 ± 7 d, respectively. Median survival rates were 43.5, 61, and 71 d for the control group, (177)Lu-DOTA-octreotate group, and the (177)Lu-DOTA-JR11-treated group, respectively. On the basis of these results, we concluded that the use of radiolabeled SSTR antagonists such as JR11 might enhance peptide receptor scintigraphy and peptide receptor radionuclide therapy of neuroendocrine tumors and provide successful imaging and therapeutic strategies for cancer types with relatively low SSTR expression.

收起

展开

DOI:

10.2967/jnumed.115.167007

被引量:

73

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(560)

参考文献(0)

引证文献(73)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读