BLT1 antagonist LSN2792613 reduces infarct size in a mouse model of myocardial ischaemia-reperfusion injury.
摘要:
Restoration of coronary blood flow is crucial in the treatment of acute myocardial infarction. Reperfusion, however, induces ischaemia-reperfusion (IR) injury, which further deteriorates myocardial function. The innate immune system plays an important role in this process, mediating rapid influx of immune cells into the reperfused myocardium. Leukotriene B4 is an important leucocyte chemoattractant, performing its actions through binding to its specific receptor BLT1. We hypothesized that treatment with LSN2792613, a selective BLT1 antagonist, reduces infarct size (IS) in a mouse model of myocardial IR injury. Male C57Bl/6J mice were subjected to myocardial ischaemia for 30 min by surgical coronary artery ligation, followed by reperfusion. Mice received either LSN2792613 or vehicle, three times daily (orally) for up to 72 h after reperfusion. BLT1 inhibition with LSN2792613 reduced IS compared with vehicle treatment (26.9 ± 2.7 vs. 34.9 ± 2.2%, P = 0.030) at 24 h after reperfusion. The levels of IL-6 and keratinocyte chemoattractant were reduced in the infarcted tissue of LSN2792613-treated mice. Reduced apoptosis in LSN2792613-treated mice was suggested by increased levels of phosphorylated JNK and GSK3α/β, and confirmed by flow cytometric analysis showing less apoptotic and necrotic cardiomyocytes in the infarcted myocardium. Echocardiography at 4 weeks after myocardial IR showed a slightly higher ejection fraction and stroke volume in mice treated with LSN2792613 compared with vehicle-treated mice, whereas left ventricular volumes were comparable. Selective BLT1 inhibition with LSN2792613 reduces inflammation and apoptosis following IR, resulting in reduced IS, and therefore might be a promising strategy to prevent myocardial IR injury.
收起
展开
DOI:
10.1093/cvr/cvv224
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(618)
参考文献(0)
引证文献(13)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无