Propofol Reduces Inflammatory Brain Injury after Subarachnoid Hemorrhage: Involvement of PI3K/Akt Pathway.
Our previous study showed that propofol, one of the widely used anesthetic agents, can attenuate subarachnoid hemorrhage (SAH)-induced early brain injury (EBI) via inhibiting inflammatory and oxidative reaction. However, it is perplexing whether propofol attenuates inflammatory and oxidative reaction through modulating PI3K/Akt pathway. The present study investigated whether PI3K/Akt pathway is involved in propofol's anti-inflammation, antioxidation, and neuroprotection against SAH-induced EBI.
Adult Sprague-Dawley rats underwent SAH and received treatment with propofol or vehicle after 2 and 12 hours of SAH. LY294002 was injected intracerebroventricularly to selectively inhibit PI3K/Akt signaling. Mortality, SAH grading, neurological scores, brain water content, evans blue extravasation, myeloperoxidase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were measured 24 hours after SAH. Immunoreactivity of p-Akt, t-Akt, nuclear factor- kappa B (NF-κB) p65, nuclear factor erythroid-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase (NQO1), and cyclooxygenase-2 (COX-2) in rat brain was determined by western blot. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in rat brain were examined by ELISA.
Propofol significantly reduces neurological dysfunction, BBB permeability, brain edema, inflammation, and oxidative stress, all of which were reversed by LY294002. Propofol significantly upregulates the immunoreactivity of p-Akt, Nrf2, and NQO1, all of which were abolished by LY294002. Propofol significantly downregulates the overexpression of NF-κB p65, COX-2, TNF-α, and IL-1β, all of which were inhibited by LY294002.
These results suggest that propofol attenuates SAH-induced EBI by inhibiting inflammatory reaction and oxidative stress, which might be associated with the activation of PI3K/Akt signaling pathway.
Zhang HB
,Tu XK
,Chen Q
,Shi SS
... -
《-》
PARP inhibition attenuates early brain injury through NF-κB/MMP-9 pathway in a rat model of subarachnoid hemorrhage.
Poly (ADP-ribose) polymerases (PARPs) play an important role in a range of neurological disorders, however, the role of PARP in early brain injury after subarachnoid hemorrhage (SAH) remains unclear. This study was designed to explore the role and the potential mechanisms of PARP in early brain injury after SAH. Eighty-nine male SD rats were randomly divided into the Sham group, SAH+Vehicle group and SAH+PARP inhibitor (PJ34) group. An endovascular perforation model was used to induce SAH in rats. PJ34 (10mg/kg) or vehicle (0.9% NaCl) was intraperitoneally administered at 5min and 8h after SAH induction. Mortality, SAH grades, neurological function, evans blue extravasation, brain edema, immunofluorescence staining and western blotting were performed. PJ34 reduced BBB permeability and brain edema, improved neurological function and attenuated neuronal cell death in the rat model of SAH. Moreover, PJ34 inhibited the nuclear translocation of NF-κB, decreased the expression of the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, reduced the expression of MMP-9, prevented the degradation of tight junction proteins, and decreased microglia activation. These data indicated that PARP inhibition through PJ34 might be an important therapeutic drug for SAH.
Chen T
,Wang W
,Li JR
,Xu HZ
,Peng YC
,Fan LF
,Yan F
,Gu C
,Wang L
,Chen G
... -
《-》
Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis.
Aberrant modulation of mitochondrial dynamic network, which shifts the balance of fusion and fission towards fission, is involved in brain damage of various neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease. A recent research has shown that the inhibition of mitochondrial fission alleviates early brain injury after experimental subarachnoid hemorrhage, however, the underlying molecular mechanisms have remained to be elucidated. This study was undertaken to characterize the effects of the inhibition of dynamin-related protein-1 (Drp1, a dominator of mitochondrial fission) on blood-brain barrier (BBB) disruption and neuronal apoptosis following SAH and the potential mechanisms. The endovascular perforation model of SAH was performed in adult male Sprague Dawley rats. The results indicated Mdivi-1(a selective Drp1 inhibitor) reversed the morphologic changes of mitochondria and Drp1 translocation, reduced ROS levels, ameliorated the BBB disruption and brain edema remarkably, decreased the expression of MMP-9 and prevented degradation of tight junction proteins-occludin, claudin-5 and ZO-1. Mdivi-1 administration also inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB), leading to decreased expressions of TNF-ɑ, IL-6 and IL-1ß. Moreover, Mdivi-1 treatment attenuated neuronal cell death and improved neurological outcome. To investigate the underlying mechanisms further, we determined that Mdivi-1 reduced p-PERK, p-eIF2α, CHOP, cleaved caspase-3 and Bax expression as well as increased Bcl-2 expression. Rotenone (a selective inhibitor of mitochondrial complexes I) abolished both the anti-BBB disruption and anti-apoptosis effects of Mdivi-1. In conclusion, these data implied that excessive mitochondrial fission might inhibit mitochondrial complex I to become a cause of oxidative stress in SAH, and the inhibition of Drp1 by Mdivi-1 attenuated early brain injury after SAH probably via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis.
Fan LF
,He PY
,Peng YC
,Du QH
,Ma YJ
,Jin JX
,Xu HZ
,Li JR
,Wang ZJ
,Cao SL
,Li T
,Yan F
,Gu C
,Wang L
,Chen G
... -
《-》