-
The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd.
Staphylococci are the leading pathogens of bovine mastitis which is difficult to control. However, the published data on the prevalence of staphylococcal species, virulence and antibiotic resistance genes in bovine mastitis from China are limited. In this study, 104 out of 209 subclinical mastitis milk samples from a single Chinese dairy herd were cultured-positive for staphylococci (49.8%), which were further identified as coagulase-positive staphylococci (CPS) or coagulase-negative staphylococci (CNS). According to the partial tuf and/or 16S rRNA gene sequence, the 28 CPS isolates were confirmed to be Staphylococcus aureus (26.9%), and 76 CNS isolates were assigned to 13 different species (73.1%) with Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus xylosus and Staphylococcus chromogenes as the dominant species. In the 28 S. aureus isolates, the most prevalent general virulence genes were coa, Ig and eno (100%), followed by hla (96.4%), hlb (92.9%), fib (92.9%), clfA (89.3%), clfB (85.7%) and nuc (85.7%). Both exotoxin and biofilm-associated genes were significantly less prevalent than the previously reported. Although 19 different virulence gene patterns were found, only one was dominant (32.1%). The prevalence of blaZ (82.1%) or mecA gene (35.7%) was much higher than the previously reported. In the 76 CNS isolates, the virulence genes were significantly less prevalent than that in the S. aureus isolates. Among the 4 main CNS species, S. chromogenes (n = 12) was the only species with high percentage (75%) of blaZ gene, while S. sciuri (n = 12) was the only species with the high percentage (66.7%) of mecA gene. The most of antibiotic resistance genes were present as multi-resistance genes, and the antibiotic resistances were attributed by different resistance genes between resistant S. aureus and CNS isolates. These data suggest that the prevalence of staphylococcal species, virulence and antibiotic resistance in the mastitis milk from the Chinese dairy herd are different from the previously reported, and that the herd- or farm-based diagnosis of staphylococcal bovine mastitis is required.
Xu J
,Tan X
,Zhang X
,Xia X
,Sun H
... -
《-》
-
Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia.
This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE).
Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain.
Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria.
Klibi A
,Maaroufi A
,Torres C
,Jouini A
... -
《-》
-
Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis.
Staphylococcus species, categorized into Staphylococcus aureus and non-aureus staphylococci (NAS), are frequent causes of mastitis in dairy cattle around the world. Current treatments using antimicrobials are under increasing scrutiny due to rising prevalence of multi-drug resistance in S. aureus. Objectives of this study were to determine: (1) genetic diversity of Staphylococcus species isolated from clinical mastitis in cows from large Chinese dairy farms; and (2) prevalence and distribution of antimicrobial resistance genes (ARG) in these isolates. Staphylococcus aureus (n = 96) were isolated from 26 herds located in 12 provinces of China, whereas NAS (n = 112) were isolated from 59 herds located in 18 provinces of China. The NAS were identified at the species level using a partial 16S rRNA sequencing method, whereas random amplification of polymorphic DNA (RAPD) PCR was done to determine genetic relationships of isolates. Finally, PCR was used to detect resistance and biofilm formation genes. Staphylococcus chromogenes (33%) was the most common NAS species, followed by Staphylococcus sciuri (17%) and Staphylococcus epidermidis (8%). Staphylococcus aureus was grouped in 12 genotypes, of which 2 types represented 56% of isolates. Staphylococcus chromogenes (n = 37) clustered into 8 RAPD types, with 2 prevalent types containing 73% of isolates. The most prevalent ARG in S. aureus isolates was blaZ (95%), followed by tetM (33%), tetK (31%), ermT (26%), and aacA-aphD (23%). The mecA and vanA were detected in 16 and 4% of isolates, respectively. In NAS, blaZ (100%), mecA (73%), tetK (79%), tetM (96%), mphC (63%), and msrA (54%) were frequently detected. Antimicrobial resistance genes mecA, tetK, tetL, tetM, dfrG, ermB, msrA, mphC, aadD, and aphA3 were more commonly detected in NAS than in S. aureus. Biofilm formation genes (icaA and icaD) were frequently detected in staphylococci isolated from bovine clinical mastitis. The existence of predominant RAPD types in S. aureus and S. chromogenes isolates across Chinese dairy farms indicated that specific genotypes had disseminated within herds and become more udder-adapted. High prevalence of ARG, especially in NAS, highlighted the risk of selection of multi-drug resistant staphylococci with potential as a reservoir of ARG.
Qu Y
,Zhao H
,Nobrega DB
,Cobo ER
,Han B
,Zhao Z
,Li S
,Li M
,Barkema HW
,Gao J
... -
《-》
-
Short communication: Detection of antibiotic resistance, mecA, and virulence genes in coagulase-negative Staphylococcus spp. from buffalo milk and the milking environment.
The aim of this study was to determinate whether coagulase-negative staphylococci (CNS) from buffalo milk or the milking environment possess virulence factors that are associated with intramammary infections or antimicrobial resistance. Milk samples (n = 320) from 80 lactating buffalo were evaluated for clinical and subclinical mastitis by physical examination, the strip cup test, California Mastitis Test (CMT), and somatic cell count (SCC) over a 4-mo period. In addition, swabs were obtained from the hands of consenting milkers (16), liners (64), and from the mouths (15) and nostrils (15) of buffalo calves. No clinical cases of mastitis were observed; however, CMT together with SCC results indicated that 8 animals had subclinical mastitis. Eighty-four CNS isolates were identified by MALDI-TOF MS and cydB real-time PCR (qPCR) and then evaluated by qPCR for presence of the eta, etb, sea, sec, cna, seb, sei, seq, sem, seg, see, and tst toxin genes, adhesion- and biofilm-associated genes (eno, ebps, fib, fnbA, coa), and the methicillin resistance gene (mecA). Resistance to antibiotics commonly used for mastitis treatment in Brazil was determined using the Kirby-Bauer test. Two strains were positive for the see and eta toxin genes; and mecA (1), eno (27), ebps (10), fnbA (10), and coa (5) genes were also detected. A notable number of isolates were resistant to erythromycin (30), penicillin (26), and cotrimoxazole (18); importantly, 10 vancomycin-resistant isolates were also detected. A smaller number of isolates were resistant to rifampicin (8), oxacillin (7), clindamycin (5), cefepime (4), tetracycline (3), ciprofloxacin (2), and chloramphenicol (1), and none were resistant to gentamicin or ciprofloxacin. Isolates with resistance to 2 (13 isolates), 3 (3), 4 (3), 5 (1), and 6 (1) antibiotics were detected. Taken together, our findings suggest that CNS isolates may not be a significant cause of clinical or even subclinical mastitis in buffaloes, but they may be a reservoir of virulence and antibiotic resistance genes.
Pizauro LJL
,de Almeida CC
,Soltes GA
,Slavic D
,de Ávila FA
,Zafalon LF
,MacInnes JI
... -
《-》
-
Presence of mecA-positive multidrug-resistant Staphylococcus epidermidis in bovine milk samples in Brazil.
Bacteria of the genus Staphylococcus are one of the major pathogens causing bovine mastitis. In recent decades, resistance of this genus to oxacillin (methicillin) has been a matter of concern due to the possibility of reducing the effectiveness of mastitis treatments and the transfer of resistance determinants to other bacteria. Oxacillin resistance was studied in 170 staphylococci from bovine milk samples, including 79 Staphylococcus aureus and 91 coagulase-negative staphylococci (CNS). The susceptibility profile of 10 antimicrobial agents used in veterinary practice was determined by the Etest method. In addition to the Etest, the phenotypic characterization of oxacillin resistance was tested using the cefoxitin disk diffusion test. All isolates were screened by PCR to detect the mecA gene in 2 different regions of the gene. The isolates with an oxacillin minimum inhibitory concentration ≥0.5 µg/mL or resistant to cefoxitin were identified by sequencing a 536-bp fragment of the 16S rRNA gene. This group of isolates was also evaluated for the presence of blaZ and mecC genes. Molecular analysis of the mecA gene was carried out by typing of the staphylococcal cassette chromosome mec (SCCmec). The relatedness of the mecA-positive isolates was evaluated by macrorestriction of chromosomal DNA followed by pulsed-field gel electrophoresis. With the exception of penicillin and oxacillin, 86% of the isolates showed susceptibility to cephalothin, gentamicin, erythromycin, sulfonamide, trimethoprim-sulfamethoxazole, and tetracycline. All S. aureus isolates were susceptible to oxacillin, whereas 47% (n=43) of the CNS isolates were resistant. The CNS isolates showed a higher resistance to cephalothin, erythromycin, tetracycline, and gentamicin in comparison with S. aureus. The mecA gene was only detected in 10 CNS isolates, identified as Staphylococcus epidermidis, and classified into 3 pulsotypes (A, B, and C) and 4 subtypes (A1, B1, B2, and B3). Among the isolates with an oxacillin resistance phenotype, 12 were positive for the blaZ gene, and 9 of them were mecA-positive. Two of the oxacillin-resistant isolates amplified the mecA homolog gene of Staphylococcus sciuri and none amplified mecC. Three SCCmec types, I, IV, and V, were found. Our results suggest that Staphylococcus epidermidis can be a reservoir for mecA for other Staphylococcus species. Studies investigating the molecular and phenotypic profile of antimicrobial resistance in staphylococcal species should be performed for controlling the spread of resistance and the selection of appropriate therapeutic measures.
Fernandes Dos Santos F
,Mendonça LC
,Reis DRL
,Guimarães AS
,Lange CC
,Ribeiro JB
,Machado MA
,Brito MAVP
... -
《-》