GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.

来自 PUBMED

作者:

Kosugi SHirakawa HTabata S

展开

摘要:

Genome assemblies generated with next-generation sequencing (NGS) reads usually contain a number of gaps. Several tools have recently been developed to close the gaps in these assemblies with NGS reads. Although these gap-closing tools efficiently close the gaps, they entail a high rate of misassembly at gap-closing sites. We have found that the assembly error rates caused by these tools are 20-500-fold higher than the rate of errors introduced into contigs by de novo assemblers. We here describe GMcloser, a tool that accurately closes these gaps with a preassembled contig set or a long read set (i.e., error-corrected PacBio reads). GMcloser uses likelihood-based classifiers calculated from the alignment statistics between scaffolds, contigs and paired-end reads to correctly assign contigs or long reads to gap regions of scaffolds, thereby achieving accurate and efficient gap closure. We demonstrate with sequencing data from various organisms that the gap-closing accuracy of GMcloser is 3-100-fold higher than those of other available tools, with similar efficiency. GMcloser and an accompanying tool (GMvalue) for evaluating the assembly and correcting misassemblies except SNPs and short indels in the assembly are available at https://sourceforge.net/projects/gmcloser/. shunichi.kosugi@riken.jp. Supplementary data are available at Bioinformatics online.

收起

展开

DOI:

10.1093/bioinformatics/btv465

被引量:

46

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(378)

参考文献(0)

引证文献(46)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读